摘要
作为原像熵概念的推广,对紧致度量空间上的连续映射T应用原像集的生成集和分离集,引入了2类原像压:Pp(T,·)和Pm(T,·);同时给出了拓扑压、原像熵和原像压之间的一个关系:P(T,f)≤hi(T)+Pm(T,f).
As an extension of the concepts of preimage entropies,by using the separated and the spanning sets of preimage set it introduces two types of preimage pressures P_p(T,·) and P_m(T,·) for mappings on compact metric spaces,and give a relation of the topological pressure,the preimage entropy and the preimage pressure:P(T,f)≤h_i(T)+P_m(T,f).
出处
《河北师范大学学报(自然科学版)》
CAS
2004年第1期9-11,共3页
Journal of Hebei Normal University:Natural Science
基金
国家自然科学基金资助项目(19731003)
关键词
原像熵
拓扑熵
拓扑压
原像压
紧致度量空间
topological entropy
topological pressure
preimage entropy
preimage pressure