期刊文献+

WDM网络中的排序与波长分配问题的一个多项式时间近似方案(英文)

A PTAS for the Scheduling and Wavelength Assignment Problem in WDM Networks
下载PDF
导出
摘要 本文考虑基于波分复用技术 (WDM)的光学网络中的排序与波长分配问题 .在波长数目固定的情况下 ,我们证明此问题是NP 困难问题 ,并且给出一个多项式时间近似方案 .若波长数目不固定 。 In this paper,we consider the scheduling and wavelength assignment(SWA) problem which arises in optical wavelengthdivisionmultiplexing(WDM) networks.We only study the nonpreemptive case.If the number of wavelengths (processors) is a fixed constant,we prove that the SWA problem is NPhard and present a polynomial time approximation scheme (PTAS) to solve it.If the number of processors isn't fixed,we prove that there does not exist an approximation scheme for the problem.
出处 《应用数学》 CSCD 北大核心 2004年第1期67-72,共6页 Mathematica Applicata
基金 SupportedbytheNationalNaturalScienceFoundationofChina (1 0 2 71 0 6 5 )
关键词 WDM网络 波分复用技术 波长分配 多项式时间近似 无线通信 Scheduling Wavelength assignment PTAS Wavelength division multiplexing
  • 相关文献

参考文献10

  • 1Bampis E,Rouskas G. The scheduling and wavelength assignment problem in optical WDM networks[J].Journal of Lightwave Technology,2002,20(5) :782-789.
  • 2Garey M R. Johnson D S. Computers and Intraetability[M]. New York:Freeman, 1979.
  • 3Gonzales T. Sahni S K. Open shop scheduling to minimize finish time[J]. Journal of the ACM, 1976,23(4) :665-679.
  • 4Horowitz E,Sahni S K. Exact and approximate algorithms for scheduling nonidentical lprocessors[J].Journal of the ACM,1976,23(3):317-327.
  • 5Hochbaum D S,Sehmoys D B. Using dual approximation algorithms for scheduling problem[J]. Journal of the ACM, 1987,34(1) : 144- 162.
  • 6Khuri S, Miryala S R. Genetic algorithms for solving open shop scheduling problems[A]. In: Lecture Notes in Artificial Intelligence: Progress in Artificial Intelligence [C]. Berlin: Spring-Verlag, 1999 : 357.
  • 7Lawer E L. Sequencing and scheduling: Algorithms and complexity[A]in: Handbook in Operations Research and Management Science[C] ,North-Holland,Elsevier Science Publishers, 1993,4:445-522.
  • 8Shmoys D B, Stein C,Wein .J. Improved approximation algorithms for shop scheduling problem[J]. SIAM J. Computing, 1994,23(3) : 617-632.
  • 9Sevastianov S V, Woeginger G J. Makespan minimization in open shops: A polynomial time approximation scheme[J].Mathematical Programming, 1998,82 : 191- 198.
  • 10Williamson D P. Short shop schedules[J]. Operations Research, 1997,45(2) :288-294.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部