期刊文献+

子流形与拓扑球面定理(英文) 被引量:1

Submanifolds and the Topological Sphere Theorem
下载PDF
导出
摘要 本文建立了球面Sn+p(c) (c>0 )中的完备子流形的一个拓扑球面定理 。 In this paper,we establish a topological sphere theorem for complete submanifolds in a sphere S n+p (c) with c>0,which shows that the topology of a complete submanifold is affected by conditions on the main intrinsic and extrinsic curvature invariants.
出处 《应用数学》 CSCD 北大核心 2004年第1期73-77,共5页 Mathematica Applicata
基金 SupportedbytheNationalNaturalScienceFoundationofChina (6 9972 0 36 ) NSFofShaanxi(0 3JK2 1 5 )
关键词 完备子流形 拓扑球面定理 曲率 RIEMANNIAN流形 Submanifold Topological sphere Fundamental group Homeomorphism
  • 相关文献

参考文献8

  • 1J Cheeger, D Ebin. Comparison theorems in riemannian geomety[M]. New York: North-Holland, 1975.
  • 2P F Leung. Minimal submanifolds in a sphere[J]. Math. Z. ,1983,183(1) :75-86.
  • 3T Hasanis,T Vlachos. Ricci curvature and minimal submanifolds[J]. Pacific J. of Math. ,2001,197(1) : 13-24.
  • 4T Vlachos. A sphere theorem for odd-dimensional submanifolds of spheres[J]. Proc. of Amer. Math.Soc. ,2001,130(1) : 167-173.
  • 5P F Leung. An estimate on the Ricci curvature of a submanifold and some applications[J]. Proc. of Amer.Math. Soc. , 1992,114 (4) : 1051 - 1061.
  • 6H B Lawson,J Simons. On stable currents and their application to global problems in real and complex geometry[J]. Ann. of Math. ,1973,98(3) :427-450.
  • 7K Shiohama, H W Xu. The topological sphere theorem for complete submanifolds[J]. Compositio Mathematica, 1997,107(2) : 221-232.
  • 8D Sjerve. Homology spheres which are covered by spheres[J]. J. London Math Soc. Ser. ,1973,6(2):333-336.

同被引文献5

  • 1Cheeger J, Ebin D. Comparsion theorem in Riemannian gromety. New York: North-Holland, 1975.
  • 2Leung P F. Minimal submanifods in a sphere. Math. Z. 1983, 183(1) :75-86.
  • 3Leung P F. An estimate on the Ricci curvature of a submanifold and some applications. Proc. of Amer.Math. Soc. 1992, 114(4):1051-1061.
  • 4Lawson H B, Simons J. On stable currents and their application to global problems in real and complex geometry. Ann. of Math. 1973, 98(3):427-450.
  • 5Sjerve D. Homology spheres which are covered by spheres. J. London Math. Soc. Ser. 1973, 6(2):333-336.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部