期刊文献+

平削算子生成的B值鞅空间及其原子分解 被引量:6

Bvalued Martingale Spaces Generated by Sharp Operator and their Atomic Decompositions
下载PDF
导出
摘要 对于一系列由平削算子生成的Banach空间值鞅空间建立了原子分解定理 ,并以此为工具讨论了它们之间的相互嵌入关系 ,其结果与Banach空间的凸性和光滑性有密切联系 . Some theorems of atomic decomposition for Banachspacevalued martingales spaces which are generated by sharp operator are established,applying them,the embedding relationships between these martingale spaces are discussed,the results obtained here are connected closly with the geometric properties of the Banach space.
作者 于林
机构地区 三峡大学理学院
出处 《应用数学》 CSCD 北大核心 2004年第1期108-114,共7页 Mathematica Applicata
基金 湖北省教育厅科学研究计划重点项目 (2 0 0 2A5 30 0 8) 三峡大学博士科研启动基金 (KJB0 1 0 3)资助课题
关键词 平削算子 BANACH空间 凸性 光滑性 鞅空间 Banachspacevalued martingale Atomic decomposition Martingale space Sharp operator Geometry of Banach space
  • 相关文献

参考文献8

  • 1刘培德,侯友良.Banach空间值鞅的原子分解[J].中国科学(A辑),1998,28(10):884-892. 被引量:14
  • 2刘培德,于林.小指标B值鞅空间与原子分解[J].中国科学(A辑),2001,31(7):615-625. 被引量:9
  • 3于林.B-值鞅 Hardy空间与 BMO空间的实内插(英文)[J].数学杂志,2002,22(4):379-384. 被引量:1
  • 4Coifman R R. A real variable characterization of H^p[J]. Studia Math. ,1974,51(3) :269-274.
  • 5Herz C S. Hp- spaces of martingales, 0<p≤[J]. Z Wahrs Verw Geb,1974,28:189-205.
  • 6Bermard A, Muisonneuve B. Decomposition atomique de martingale de la class H1[A]. Seminaire de Probabilites Ⅺ (Lecture Notes in Mathematics, Vol. 581) [C].Berlin: Springer-Verlay, 1997,303 - 323.
  • 7Weisz F. Martingale hardy space and their applications in fourier analysis[M]. Lecture Notes in Mathematics, Berlin:Springer-verlay, 1994,1568.
  • 8于林. Duals of Banach-space-valued martingale hardy spaces[J].Kyungpook Mathematical Journal,2001,41(2) :259-275.

二级参考文献17

  • 1Weisz F. Martingale Hardy Space andTheir Applications in Fourier Analysis[M[. Lecture Notes inMathematics, 1568, Berlin:Springer-Verlag, 1994.
  • 2Long R L. Martingale Space and Inaqualities[M]. Beijing: Peking Univ. Press, 1993.
  • 3Long R L, Liu P D. Real Interpolation for B-valued Regular Martingale Spaces[J].Chinese ann ofMath, Series A. 1993, 14(2): 152~158.
  • 4Yu Lin. Real Interpolation Between B-valued Martingale Hardy Spaces[J]. WuhanUniversity Journalof Natural Sciences, 1999. 4(2): 129~134.
  • 5Weisz F. Interpolation Between Martingale Hardy Spaces[J]. Bull Sci Math. 1992.116: 145~ 158.
  • 6Bassily N L. Mogyorodi J. On the BMOφ-spaces with General Youny Function[M]. AnnUniv SciBudap Rolando Eotvos, Sect Math, 1984, 27: 215~227.
  • 7Bergh J, Lofstrom J. Interpolation Spaces[M]. Berlin, Heidedberg, New York:Springer, 1976.
  • 8Yu Lin. The Duals of Vector-valued Martingale Hardy Space[J]. KyungpookMathematical Journal,2001, 41(2): 259~275.
  • 9Pisier G. Martingales àValeurs Dans les Espaces Uniformement Convexes. Handwritten Mimeographed Notes, EcolePolytechnique, Paris, 1974
  • 10Woyczynski W A. Geometry and Martingales in Banach Spaces. Lecture Notes inMathematics, Vol 472. Berlin: Springer-Verlag, 1975. 229~275

共引文献17

同被引文献34

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部