期刊文献+

倒向双重随机微分方程 被引量:9

Backward Doubly Stochastic Differential Equations
下载PDF
导出
摘要 本文研究了如下倒向随机微分方程Yt =ξ + ∫Ttf(s,Ys,Zs)ds+ ∫TtB(ds,g(s,Ys,Zs) ) - ∫TtZsdWs ,在类似于Yamada条件下 ,得到了它解的存在唯一性定理 ,推广了AnisMatoussi和MichaelScheutzow相关结果 . In this paper,we consider the following Backward doubly stochastic differential equations:Y t=ξ+∫T tf(s,Y s,Z s)ds+∫T tB(ds,g(s,Y s,Z s))-∫T tZ sdW s.We establish it's existence and uniqueness theorem under similar to Yamada condition,generalize Anis Matoussi and Michael Scheutzow's result,extend applications of BSDE in stochastic controls and mathematical finance.
出处 《应用数学》 CSCD 北大核心 2004年第1期95-103,共9页 Mathematica Applicata
基金 国家自然科学基金 (70 0 71 0 1 1 )
关键词 倒向双重随机微分方程 存在性 唯一性 随机控制 BIHARI不等式 BDSDE Yamada condition ItKunita's stochastic integral Bihari inequality
  • 相关文献

参考文献5

  • 1Pardoux E, Peng S. Backward doubly SDES and systems of quasilinear SPDEs[J]. Probab Theory Related Fields, 1994,98 : 200 -227.
  • 2Matoussi A,Seheutzow M. Stochasti PDES driven by nonlinear noise and Backward doubly SEDs driven by nonlinear noise and Backward doubly SDEs[J]. J. Theoret Probab,2002,15:1-39.
  • 3Bihari I. A Generalization of A Lemma of Bellman and Its Application to Uniqueness Problem of Differential Equations[J]. Acta Math. Acad. Sci. Hunger, 1956,7:71-94.
  • 4Mao X, Adapted Solutions of Backward Stochastic Differential Equations with No-Lipschitz Coefficients[J]. Stochastic Process and their Applications, 1995,58:281-292.
  • 5曹志刚,严加安.倒向随机微分方程解的比较定理(英文)[J].数学进展,1999,28(4):304-308. 被引量:19

二级参考文献4

  • 1Mao Xieyong,Stoch Process Their Appl,1995年,58卷,281页
  • 2Peng Shige,Proc Sympo System Sciences and Control Theory Chen Yongeds,1992年,173页
  • 3He Shengwu,Semimartingal Theory and Stochastic Calculus,1992年
  • 4Pardoux E,Syst Contr Lett,1990年,14卷,55页

共引文献18

同被引文献57

  • 1冉启康.一类非Lipschitz条件的BSDE解的存在唯一性[J].工程数学学报,2006,23(2):286-292. 被引量:3
  • 2卢英,孙晓君.多维双重倒向随机微分方程比较定理[J].纺织高校基础科学学报,2006,19(4):313-317. 被引量:3
  • 3彭实戈.倒向随机微分方程及其应用[J].数学进展,1997,26(2):97-112. 被引量:72
  • 4Pardoux E,Peng S. Backward doubly stochastic differential equations and systems of quasilinear SPDEs [J]. Probab Theory Related Fields, 1994,98 (2) : 209-227.
  • 5Peng S. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations [J]. Stoch Reports, 1991,37 (1) : 61-74.
  • 6Mao X. Adapted solution of backward stochastic differential equation with non-Lipschitz coefficients[J]. Stochastic Processes and their Applications, 1995,58 : 281-292.
  • 7Lepeltier J P. Martin J San. Backward stochastic differential equations with continuous coefficient[J]. Statistics and Probability Letters, 1997,32 (1): 425-430.
  • 8Jia G. A uniqueness theorem for the solution of backward stochastic differential equations[J]. C R Acad Sci Paris Ser I, 2008,346:439-444.
  • 9Peng S. Backward stochastic differential equations and applications to optimal control [J ]. Appl Math Optim, 1993,27(2) : 125-144.
  • 10Shi Y,Gu Y, Liu K. Comparison theorem of backward stochastic doubly differential equation and application [J].Stoch Anal Appl,2005,23(1) : 97-110.

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部