摘要
从材料响应的理论合成应与实际测量数据相拟合这一出发点,将参数反演问题转化为非线性方程组的零点求解问题,从而应用一种大范围收敛的同伦方法来求解非线性方程组,并把这种方法用于Simon1984年给出的具有解析解的一维双相介质模型的数值模拟。数值模拟实例的结果表明了同伦方法的可行性和稳健性。
According to the principle that the computed response and measured response should be fitted,the parameter inversion problem is reduced to a problem of solving nonlinear equations’ zero. Then the homotopy method can be used and it is widely convergent to solve nonlinear equations. At last,this method is used to solve a 1-D model in porous media which has an analytical solution given by Simon in 1984. The numerical results confirm that homotopy algorithms are feasible and robust.
出处
《岩石力学与工程学报》
EI
CAS
CSCD
北大核心
2004年第1期129-136,共8页
Chinese Journal of Rock Mechanics and Engineering
基金
国家自然科学基金(19872002)资助项目
关键词
同伦法
双相介质
孔隙介质
数值模拟
numerical simulation,homotopy method,porous media,inversion,widely convergent