期刊文献+

关于Camassa-Holm方程尖孤立子解的扩展(英文) 被引量:8

Extention on the peakons of Camassa-Holm equation
下载PDF
导出
摘要  对任意的参数k和波速c,使用动力系统分支方法求出了Camassa Holm方程有形如u(x,t,c,k)=(k+c)·exp(-|x-ct|)-k的尖孤立子解.以前文献中有关该方程的尖孤立子解变成了本文的特殊情况. Bifurcation method of planar dynamical systems is used to show that Camassa-Holm equation has peakons of the form (u(x,t,c,k) )= (k+c)exp(-|x-ct|)-k for any parameter k and constant wave speed c. Some known peakons become our special cases.
作者 刘正荣
机构地区 云南大学数学系
出处 《云南民族大学学报(自然科学版)》 CAS 2004年第1期3-9,共7页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金资助项目(10261008).
关键词 CAMASSA-HOLM方程 尖孤立子解 动力系统分支方法 波速 Peakons Camassa-Holm equation Hamiltonian system phase portrait
  • 相关文献

参考文献20

  • 1Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Phys Rev Lett, 1993, 71 (11):1661 - 1664.
  • 2Cooper F, Shepard H. Solitons in the Camassa - Holm shallow water equation[J]. Plays Lett A, 1994, 194(4) :246 - 250.
  • 3Alber M S, Camassa R, Holm D D, et al. The geometry of peaked solitons and billiard solutions of a class of integrable PDEs[J]. Lett in Math Phys, 1994, 32(2) : 137 - 151.
  • 4Boyd J P. Peakons and coshoidal waves: travelling wave solutions of the Camassa-Holm equation[J]. Appl Math Comput, 1997, 81(2- 3):173- 187.
  • 5QIAN Ti-fei, TANG Min-ying. Peakons and periodic cusp waves in a generalized Canmssa-Holm equation[J]. Choas, Solitons and Fraetals, 2001,12:1347 - 1360.
  • 6LIU Zheng-rong, QIAN Ti-fei. Peakons and their bifurcation in a generahzed Camassa-Holm equation[J]. International Journal of Bifurcation and Choas, 2001,11 (3) :781 - 792.
  • 7LIU Zheng-rong, QIAN Ti-fei. Peakons of the Camassa-Holm equation[J]. Applied Mathenmtical Modeling, 2002,26: 473- 480.
  • 8Constantin A, Strauss W A. Stability of the Canrmassa-Holm solitons[J] .J Nonlinear Sci, 2002, 12:415- 422.
  • 9Reyes E G. Geometric integrability of thd Camassa-Holm equation[J]. Lett Mafia Phys, 2002, 59(2): 117- 131.
  • 10Guckeenheimer J, Holmes P. Dynamical systems mid bifurcation of vector fields[M]. New York: Springer, 1983.

同被引文献74

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部