期刊文献+

一类非线性椭圆边值问题解的性态研究

The behavior study of solutions to nonlinear elliptic problem
下载PDF
导出
摘要 利用了一类非线性椭圆问题及其解的有关性质,研究了非线性椭圆边值问题Lu的解当λ→∞时的渐进性态,并证明了在一定条件下,该类问题的某些正解当参数λ→∞时以测度收敛 这类椭圆问题为Lu=λf(x,u) x∈Ω,λ>0 (aij(x) u)+c(x)u xj xiu| Ω=0和Lu=-∑ni。 The behavior to solutions to nonlinear elliptic problemsLu=λf(x,u)x∈Ω,λ>0 u|_(Ω)=0 where Lu=-∑ni,j=1x_i(a_(ij)(x)ux_j)+c(x)u is studied.Under certain conditions,it is shown that some positive solutions approach some constants in measure when λ→∞.
作者 喻宪生
出处 《西安邮电学院学报》 2004年第1期76-79,共4页 Journal of Xi'an Institute of Posts and Telecommunications
关键词 非线性椭圆 边值问题解 渐进性态 正解 elliptic problem positive solution behavior of solutions
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Jannelli E. The role played by space dimension in elliptic critical problems[J]. J Diff Equs,1999,156(2):407~426.
  • 2[2]Garcia Azorero J, Peral Alonso I. Hardy inequalities and some critical elliptic parabolic problems [J]. J Diff Equs, 1998,144 (2) :441 ~476.
  • 3[3]Ghoussoub N,Yang C. Multiple solutions for quasi-linear PDEs involving the critical sobolev and Hardy exponents[J]. Trans Amer Math Soc, 2000,352 (12): 5703 ~ 5743.
  • 4[4]Cheng Ting. Existence of minimal positive solution for-△μ- μ /μ|x|2 = u2* -1 +σf(x). J Central China Normal University[J]. 2001,35 (2) : 136 ~ 140.
  • 5[5]Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical sobolev expo nents[J]. Comm Pure Appl Math, 1983,36(3): 437~477. '
  • 6[6]Struwe M. Variational Methods[M]. Berlin:Springer-Verlag,1996.
  • 7[7]Deng Yinbin,Li Yi. Existence and bifurcation of the positive solutions for a semilinear elliptic equation with critical exponent[J]. J Diff Equs, 1996,130(1) : 1 79~200.
  • 8[8]Deng Yinbin. Existence of multiple positive solutions of inhomogeneous semilinear elliptic problem invol ving critical exponents[J]. Comm PDE, 1992,17 (1): 33~53.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部