期刊文献+

圆管流动的二次转捩

SECONDARY TRANSITION IN PIPE FLOW
下载PDF
导出
摘要 利用直接数值模拟方法求解N-S方程来研究空间发展的圆管转捩,计算中雷诺数Re选定为3000。在局部壁面引入的周期性吹吸(PSB)扰动作用下,圆管中首先出现了塞流结构,并向下游迁移,同时有稳定的流向条带结构形成;在塞流结构离开计算域后,随着扰动的不断发展,流向条带结构逐渐破裂失稳,圆管流动出现了第二次转捩,这是一种新的转捩形式,我们称之为“二次转捩”。 The transition in spatially evolving pipe flow at Re=3000 is studied by direct numerical simulation of Navier-Stokes equation. By the disturbance imposed from the pipe wall in the form of periodic suction and blowing (PSB), slug structures that travel downstream are generated. Meanwhile, steady streamwise streaky structures are formed. After the slug structure moves out of the computational domain, with the development of the disturbance, the streamwise streaky structures lose their stability and break down, and the transition occurs again. This is a new kind of transition, and is referred to as secondary transition.
出处 《工程力学》 EI CSCD 北大核心 2003年第5期37-41,共5页 Engineering Mechanics
基金 国家自然科学基金资助项目(19732005)
关键词 圆管流动 转捩 直接数值模拟 周期性吹吸(PSB) 空间发展 塞流 Computer simulation Fluid dynamics Navier Stokes equations Reynolds number Stability Transition flow
  • 相关文献

参考文献8

  • 1Han G, Tumin A, Wygnanski I. Laminar-turbulent transition in Poiseuille pipe flow subjected to periodic perturbation emanating from the wall. Part 2. Late stage of transition[J]. J. Fluid Mechanics 2000, 419: 1-27.
  • 2Wygnanski I J, Champagne F H. On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug[J]. J. Fluid Mechanics 1973, 59: 281-335.
  • 3Bergstrom L. Initial algebraic growth of small angular dependent disturbances in pipe Poiseuille flow[J]. Stud. Appl. Maths. 1992, 87: 61-79.
  • 4Bergstrom L. Optimal growth of small disturbances in Pipe Poiseuille flow[J]. Physics of Fluids 1993, A5: 2170-2720.
  • 5O'Sullivan P L, Breuer K S. Transient growth in circular pipe flow. II Nonlinear disturbances[J]. Physics of Fluids 1994, 6: 3652-3664.
  • 6Mayer E W, Reshotko E. Evidence for transient disturbance growth in a 1961 pipe-flow experiment[J]. Phys. Fluids 1997, 9: 242-244.
  • 7Shan H, Ma B, Zhang Z, Nieuwstadt F T M. Direct numerical simulation of a puff and slug in transitional cylindrical pip flow[J]. J. Fluid Mechanics 1999, 389: 39-60.
  • 8Ma B, Van Doorne C W H, Zhang A, Nieuwstadt F T M. On the spatial evolution of wall-imposed periodic disturbances in pipe Poiseuille flow at Re=3000. Part 1 Subcritical disturbances[J]. J. Fluid Mechanics, 1999, 398: 181-224.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部