摘要
构造了用于复合材料偏心加筋壳形结构大变形分析的任意加筋壳单元。在此模型中,肋骨连同壳的整体被视为一个单元偏心加筋壳单元。肋骨可放在壳单元内的任意位置和任意方向。所构造单元的特点是在网格划分时,可不必考虑肋骨的位置,这就给网格划分带来了很大的灵活性。在壳和肋骨的方程中,引用Von-Karman大变形理论计及几何非线性的影响,按照Mindlin-Reissner一阶剪切变形理论考虑横向剪切变形。
A new arbitrary stiffened shell element is devised to investigate the geometrically nonlinear behavior of eccentrically stiffened laminated composite shell-like structures. In this model, the shell together with stiffeners is considered as a unit element—eccentrically stiffened shell element. The stiffener can be placed anywhere within the plate element and oriented at any direction. The main feature of this model lies in that the mesh divisions can be made irrelevant to the stiffener locations, which introduces considerable flexibility for mesh division. For large deformation, the Von-Karman kinematic relations of the shell and stiffener are considered. The transverse shear deformation effect is included by use of the Mindlin-Reissner first-order shear deformation theory.
出处
《工程力学》
EI
CSCD
北大核心
2003年第5期134-138,共5页
Engineering Mechanics
关键词
固体力学
加筋壳
有限元
复合材料
非线性
solid mechanics
stiffened shell
finite element
composite
nonlinearity