摘要
首先给出Banach格E上的代数对偶E#,算子对偶E*和序对偶E′之间关系,证明了当E是Banach格时,E*=E′;讨论了典型映射与序对偶之间的关系,证明了当T是正则算子时,‖JT‖r=‖T′‖r;当E是序完备的Banach格,T∈Lr(E)保不相交;P(T)是单射时,T∈Z(E).
Let E be Banach lattice, E~# be its algebra dual,E~*, E′ be the operator dual and order dual, respectively. We show that E~*=E′ when E is a Banach Lattice. The relation between evaluation map and order dual is given. That is, given T∈L^r(E,F), ‖JT‖r=‖T′‖_r; given E as Banach lattice, T∈L^r(E) is has the disjoint preserving and when P(T) is injective, T∈Z(E).
出处
《西安建筑科技大学学报(自然科学版)》
CSCD
2003年第4期409-411,共3页
Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金
国家自然科学基金项目(10071047)