摘要
粗集理论是波兰学者Pawlak提出的知识表示新理论.Pawlak代数是粗集理论中粗集系统的抽象,其公理系统包含了知识粗表示所必须的全部性质.本文深入研究了F格上的逼近算子,建立了F格上弱逼近算子之间的某些代数运算,从而从理论上建立了各种知识粗表示之间的联系.我们还定义了逼近算子的闭包,进而用逼近算子导出拓扑,为信息系统的近似提供必要的数学基础.最后,作为特例,我们研究了粗集理论中由相似关系导出逼近算子的某些性质.
In this paper, Pawlakean algebra is a abstract modei of the rough set system. We have discussed the lattice of a weak approximation operator introduced by the order relation on an operator space. By defining the closure operator of an approximation operator, the approximation operator is connected with topology on F-lattice. This connection provides mathematical basis for approximate representation of uncertain information systems. At last, the approximation operator deduced by similar relation is discussed in rough set theory.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2003年第6期1163-1170,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10271035)
云南省自然科学基金资助项目