期刊文献+

金属蒸气真空弧离子源Co离子注入对不锈钢摩擦磨损性能的影响 被引量:2

Effect of Co Ion Implantation on Friction and Wear Behavior of Stainless Steel
下载PDF
导出
摘要 采用金属蒸气真空弧离子源对1Cr18Ni9Ti不锈钢进行Co离子注入,考察了注入处理试样的摩擦磨损性能.结果表明:Co注入处理样品的表面硬度比未注入样品的高1.0~1.5倍,且硬度随离子束流密度的增大而增大;Co注入处理试样的摩擦系数显著降低至约0.20,磨损体积损失降低25%~45%;当束流密度为22μA/cm2、注入剂量为5×1017/cm2时,注入处理样品的摩擦系数为0.19,耐磨寿命最长;在所选定的试验参数范围以内,当临界束流密度处于22μA/cm2时,保留剂量最大,改性表面硬度最高,耐磨性能最佳. 1Cr18Ni9Ti stainless steel was ion implanted with Co using metal vapor vacuum arc ion source (Mevva), at an accelerating voltage of 40 kV, implantation doses of 3×1017/cm2 and 5×1017/cm2 and ion current densities of 13 μA/cm2, 22 μA/cm2 and 32 μA/cm2. The friction and wear behavior of the Co-ion implanted stainless steel in sliding against SAE52100 steel was investigated on a 2002-I vacuum friction and wear tester, in a ball-on-disc contact configuration. The worn surface morphologies of the unimplanted and various implanted stainless steel specimens were observed with a scanning electron microscope. The results showed that the Co-implanted stainless steel specimens had much higher hardness and better wear-resistance than the unimplanted one, while the hardness and the wear-resistance of the implanted specimens were dependent on the ion-implantation parameters. The friction coefficient decreased from 0.74 to 0.20 after Co implantation and the wear volume reduced by 25%-45% as compared to the unimplanted specimen. The Co-ion implantation of the stainless steel also led to differences in the worn surface morphologies of the stainless steel specimens, which accounted for their different friction and wear behaviors to some extent. The stainless steel specimen implanted at a current density of 22 μA/cm2 and an implantation dose of 5×1017/cm2 showed the best friction-reducing and antiwear ability.
出处 《摩擦学学报》 EI CAS CSCD 北大核心 2003年第6期480-484,共5页 Tribology
关键词 不锈钢 金属蒸气真空弧(Mevva) 离子注入 摩擦磨损性能 Cobalt Friction Hardness Morphology Positive ions Scanning electron microscopy Stainless steel Wear of materials Wear resistance
  • 相关文献

参考文献12

  • 1[1]Brown I G, Galvin J E, Macgill R A. High current ion source[J]. Appl Phys Lett, 1985, 47: 358-360.
  • 2[2]Brown I G, Oks E M. Vacuum arc ion sources- a brief historical review[J]. IEEE Trans Plasma Sci, 1997, 25: 1 222-1 228.
  • 3[3]Zhang T, Zhang H, Ji C,et al. Industrialization of MEVVA source ion implantation[J]. Surf Coat Technol, 2000, 128-129: 1-8.
  • 4冶银平,陈建敏,张绪寿.铬离子注入改善纯铁摩擦学特性的研究[J].摩擦学学报,1996,16(1):28-34. 被引量:1
  • 5[5]Manory R R,Mollica S,Ward L,et al.The effect of MEVVA ion implantationon the tribological properties of PVD-TiN films deposited on steel substrates[J]. Surf Coat Technol, 2002, 155: 136-140.
  • 6[6]Liu P,Tao Y,Pei G, et al. The influenec of Nb+ and Al+ implantation on the oxidation behavior of Ti-60 alloy[J]. Surf Coat Technol, 2000, 128-129: 89-93.
  • 7[7]Sasaki J, Hayashi K, Sugiyama K,et al. Implanation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel[J]. Surf Coat Technol, 1992, 51: 166-175.
  • 8[8]Noli F, Misaelides P, Giorginis G,et al. The effect of Zr implantation on the thermal oxidation and aqueous corrosion of AISI 321 stainless steel[J]. Nucl Instrum Meth Phys Res, 1995, B95: 197-207.
  • 9[9]Yi Z, Xiao Z, Ma F,et al. Wear resistance properties of stainless steel modified with co-implantation of V+C[J]. Surf Coat Technol, 2000, 128-129: 186-191.
  • 10[10]Wang M, Zhang Q Y, Shi W D, et al. Effect of Mo and Mo+N implantation on corrosion resistance of austenitic stainless steel[J]. Surf Coat Technol, 1994, 65: 171-174.

二级参考文献2

  • 1杨德华,1994年
  • 2胡壮麒,表面改性与合金化,1988年

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部