摘要
设x(t)∈Rn,τ(t)∈R,方程 x(t)=f(t,x(t),x(t—τ(t))) (1)其中f:R×Rn×Rn→Rn,τ:R→R为连续。 方程(1)的求特解问题,没有一般方法可寻,本文将对(1)的求特解的方法做初步探讨,指出(1)的求特解问题,在一定条件下,可以转化成一个常微分方程的求解问题,从而给出寻求特解的一个途径。
Let us now consider equations(1)in which is contious functions.Equation (1) have not a certain method to find solution. In this paper treats method to find solution for equation (1). The paper point out that under some condition can be changed problems of to find solution for equation (1) into problems of to find dolution of ordinary differential equations.
出处
《松辽学刊(自然科学版)》
1992年第4期43-47,共5页
Songliao Journal (Natural Science Edition)
关键词
泛函微分方程
特解
混合型方程
functional differential equation special solution