摘要
利用小波包分解对信号进行精确细分的特点 ,构造出相应的能量谱作为旋转机械运行状态的特征向量 ,并以此作为 2 D HMM的输入进行训练 ,建立了基于 2 D HMM的旋转机械运行状态分类器 ,用以识别机组状态。最后通过 Bently-
The energy spectrum from the wavelet packet decomposition can be used as feature vectors of running state of a rotating machine to train 2DHMM. So the classified model based on 2DHMM was constructed. The new model was tested with the experimental data collected from a BentlyNevada rotor experimental system and the result demonstrated that the model was effective to classify classical faults in speed up process of a rotating machine.
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2004年第1期117-120,共4页
Transactions of the Chinese Society for Agricultural Machinery
基金
国家自然科学基金资助项目 (项目编号 :5 0 0 75 0 79)