期刊文献+

高超声速飞行动态特性的特征值扰动分析 被引量:2

Eigenvalue perturbation analysis of thrust law effects on hypersonic flight dynamics
下载PDF
导出
摘要 提出了一种基于特征值扰动理论的方法来分析推力特性对高超声速纵向飞行动态的影响,指出飞行动态的改变是飞行动态灵敏度和推力特性共同作用的结果。使用未扰矩阵的特征值条件数评价了各个运动模态的灵敏度,通过对扰动矩阵2范数的解析分析了各种推力特性的影响。结果表明:沉浮运动模态最容易受到推力特性的影响;飞行速度越高,飞行动态对外界扰动越敏感;推力/速度特性是影响飞行动态的主要推力特性。 A novel approach is proposed using the eigenvalue perturbation theory to analyze the thrust law effects of advanced air-breathing engines on hypersonic longitudinal dynamics. It is noticed that the influences of thrust laws are determined not only by the thrust characteristics, but also by the sensitivity of flight dynamics. By appropriate linear decomposition of the system matrix, the contributions of these two factors are analyzed using the eigenvalue perturbation theory. The influences of thrust laws are examined by their contributions to the 2-norm of the perturbation matrix. The sensitivities of the longitudinal modes of motion are examined according to their eigenvalue condition numbers. It is concluded that the phugoid mode is much more sensitive to thrust laws than the short period mode, and the thrust/speed dependence is the dominant factor that influences the flight stability. A detailed development of the method along with its application to a benchmark hypersonic vehicle Winged-cone as an example is included.
作者 刘强 于达仁
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2004年第1期7-10,共4页 Journal of Harbin Institute of Technology
基金 国防基础科研项目(K1400060703) 博士点科研基金(2000021329)
关键词 推力特性 高超声速飞行器 发动机 灵敏度 范数 扰动矩阵 Dynamic response Equations of motion Hypersonic aerodynamics Perturbation techniques
  • 相关文献

参考文献16

  • 1NEUMARK S. Longitudinal stability, speed and height[J]. Aircraft Engineering, 1950, 22:323 -334.
  • 2STENGEL R F. Altitude stability in supersonic cruising flight[J]. Journal of Aircraft, 1970, 7(5) : 464 -473.
  • 3MARKOPOULOUS N, MEASE K D, VINH N X. Thrust law effects on the long - period modes of aerospace craft[ A1. Proceedings of American Atmosphere Flight Mechanics Conference[ C]. Boston: [ s. n.], 1989.
  • 4JAMES D. Applied numerical linear algebra[M]. Philadelphia: SIAM, 1997.
  • 5WANG Q, STENGEL R F. Robust nonlinear control of a hypersonic aircraft[ J].Journal of Guidance Control and Dynamics, 2000, 23 (4) : 577 - 585.
  • 6SHAUGHNESSY J D, PINCKNEY S Z, MCMINN J D, et al. Hypersonic vehicle simulation model: wingedcone configuration[ R]. NASA TM - 102610, 1991.
  • 7DAVID L R, MICHAEL R P, LEE H P. Investigation of piloting aids for manual control of hypersonic maneuvers[R]. NASATP-3525, 1995.
  • 8CALISE A J, BUSCHEK H. Research in robust control for hypersonic vehicles[ R]. NASA CR - 192127, 1992.
  • 9NEUMARK S. Longitudinal stability, speed and height[J]. Aircraft Engineering, 1950, 22: 323 - 334.
  • 10STENGEL R F. Altitude stability in supersonic cruisingflight[J]. Journal of Aircraft, 1970, 7(5): 464 -473.

同被引文献18

  • 1李新国,方群.有翼导弹飞行力学[M].西安:西北工业大学出版社,2005.
  • 2Eugene A M, Stephen D D. Aerodynamic Parameter Estimation for the X-43(Hyper-X) from Flight Data. AIAA-2005-5921.
  • 3Baris Fidan, Maj MirMirani, Petros A I. Flight Dynamics and Control of Air-Breathing Hypersonic Vehicals Based on Time-Var- ying Models. AIAA-2003-7081.
  • 4Fidan B, Kuipers M, Mirmiran M, Ioannou P, Longitudinal Motion Control of Air-Breathing Hypersonic Vehicle Based on Time- Varying Models. AIAA-2003-6980.
  • 5Michael A B, David B D. Nonlinear Longitudinal Dynamical Model of an Air-Breathing Hypersonic Vehicle. AIAA-2337-0948.
  • 6Yao Zhanghui, Bao Wen, Jiao Hongying. Modeling for Coupled Dynamics of Integrated Hypersonic Air-Breathing Vehicle and Engine. AIAA-2009-5431.
  • 7Jim Demmel. Applied Numerical linear Algebra. Philadelphia SIAM, 1997.
  • 8Wang Q, Stege R F. Robust Nonlinear Control of a Hypersonic Aircraft. AIAA-1999 -4000.
  • 9KESHMIRI S, COLGREN R, MIRMIRANI M D. Six DOF nonlinear equations of motion for a generic hypersonic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, VA : AIAA, 2007 : 1 - 28.
  • 10SHAUGHNESSY J D, PINCKNEY S Z, McMINN J D, et al. Hypersonic vehicle simulation model: winged-cone configuration [C]//NASA Technical Memorandum 102610. Hampton, Virginia: NASA Langley Research Center, 1990:1 - 140.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部