摘要
用BP神经网络,在1.017≤Pr≤8.134和1.019≤Tr≤5.917的范围内,对798组超临界CO2的P-V-T数据进行训练和预测,预测160组,平均相对误差为2.01%;用RKRKS及PR状态方程法计算这160组数据,平均相对误差分别为2.66%、3.24%和2.48%.表明神经网络法优于状态方程法。
BP Neural Network was used to predict the molar volume of supercritical Carbon Dioxide. In the range of 1.017≤pr≤8.134 and 1.019≤Tr≤5.917,798 experiment points were trained and predicted. The average relative error of predicting is 2.01%. Then RK EOS,RKS EOS and PR EOS are used to calculate these data,with average relative deviations being 2.66% ,3.24% and 2. 48% respectively. This method is proved to be superior to EOS.
出处
《贵州工业大学学报(自然科学版)》
CAS
2003年第6期65-67,共3页
Journal of Guizhou University of Technology(Natural Science Edition)