摘要
目前,对模糊有限元方程的求解思路是:在确定性有限元方程中引入参数的模糊性,然后对应一系列阈值l,将模糊有限元平衡方程转化为一系列确定性区间方程组,再求解这些区间方程组。然而,至今区间方程组的求解问题尚未解决,因而模糊有限元方程组的求解亦未得到有效的解法。将模糊系数规划与弹性力学的行为本质棗即物体的平衡过程为一个二次方程的能量极小化过程相结合,得到了一种新的模糊有限元求解方法,数值仿真实验表明该方法可行。
At present, the solution of fuzzy finite element equation consists of the following three steps: Firstly, fuzziness of parameter is introduced into finite element equations. Secondly, these fuzzy finite element equilibrium equations are cast into a set of interval equations according to a set of threshold value l. It is then followed by the solution of the interval equations. While so far the problem of solution of interval equations has not been resolved. Consequently, the solution of fuzzy finite element equations has no efficient method. In this paper, a fuzzy coefficient programming method is combined with the quadratic equation energy-minimization of elasticity. A new fuzzy finite element solution method is developed. Numerical simulation illustrates that the method is feasible.
出处
《工程力学》
EI
CSCD
北大核心
2003年第6期111-115,27,共6页
Engineering Mechanics
基金
教育部优秀青年教师资助计划(1766)
国家自然科学基金(高技术新概念新构思探索)(59685003)
油气藏地质及开发工程国家重点实验室开放基金(PLN0102)资助课题
关键词
工程力学
模糊有限元
模糊系数规划
区间方程组
engineering mechanics
fuzzy finite element
fuzzy coefficient programming
interval equations