期刊文献+

能量粒子轰击金刚石的计算机模拟 被引量:1

A molecular dynamics study of energetic particle bombardment on diamond
原文传递
导出
摘要 利用Tersoff势和分子动力学方法研究了初始动能为 5 0 0eV的硼粒子注入金刚石的微观行为 .结果表明 :硼注入后产生温度为 5 0 0 0K的热峰 ,其寿命为 0 18ps;同时产生半径为 0 4 5nm局部非晶化区域 ,三重配位原子数占该区域原子数的 7% .薄膜表层原子向内弛豫 ,近表层原子向外弛豫 ,表面层与近表层原子的间距减少了15 % ,表面层表现为压应力 .硼原子以B <110 >分裂间隙的形式存在于金刚石结构中 . Molecular dynamic simulations, utilizing the Tersoff many-body potential, are used to investigate the microscopic processes of a single boron atom with an energy of 500 eV implanted into the diamond (001) 2 x 1 reconstructed surface. By calculating the variation of the mean coordination number with time, the lifetime of a thermal spike created by B bombardment is about 0.l8ps. Formation of the < 110 > split-interstitial composed of projectile and lattice atom( B-C) is observed. The total potential energy of the system decreases about 0.56 eV with a stable B < 110 > split-interstitial existing in diamond. Lattice relaxations in the diamond (001) 2 x 1 reconstructed surface or near surface of the simulated have been discussed, and the results show that the outermost layer atoms tend to move inward and other atoms move outward, while the interplanar distance between the outermost layer and the second layer has been shortened, by 15% compared with its starting interplanar distance. Stress distribution in the calculated diamond configuration is inhomogeneous. After boron implanted into diamond with an energy of 500 eV, there is an excess of compressively stressed atoms in the lattice, which induces the total stress being compressive.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2003年第12期3135-3141,共7页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :5 0 0 82 0 0 5 )资助的课题~~
关键词 Tersoff势 分子动力学 粒子轰击 金刚石 硼粒子 粒子注入 原子弛豫 分裂间隙 掺杂 molecular dynamics simulations diamond boron implant
  • 相关文献

参考文献26

  • 1[1]Prins J F 1999 Diam.Relat.Mater.8 1635
  • 2[2]Prins J F 2000 Phys.Rev.B 61 7191
  • 3[3]Hasegawa M,Takeuchi D,Yamanaka S et al 1999 Jpn.J.Appl.Phys.38 L1519
  • 4[4]Zhu J,Rubia T D,Yang L H 1996 Phys.Rev.B 54 4741
  • 5[5]Hakala M,Pauska M J,Nieminen R M 2000 Phys.Rev.B 61 8155
  • 6[6]Sadigh B,Lenodky T J,Theiss S K et al 1999 Phys.Rev.Lett.83 4341
  • 7[7]Alippi P,Colombo L,Ruggerone P 2001 Comp.Mater.Sci.22 44
  • 8[8]Gartner K,Wende S C,Nitschke M 1994 Nucl.Instrum.Meth.B 90 124
  • 9[9]Perez-Martin A M C,Dominguez-Vazquez J,Jimenez-Rodriguez J J 2000 Nucl.Instrum.Meth.B 164-165 431
  • 10[10]Tersoff J 1988 Phys.Rev.Lett.61 2879

同被引文献17

  • 1乔永红,王绍青.硅晶体中点缺陷结合过程的分子动力学研究[J].物理学报,2005,54(10):4827-4835. 被引量:8
  • 2Li R B 2005 Solid State Communications 135(3) 155.
  • 3Tersoff J 1989 Phys. Rev. B 39 5566.
  • 4Matsunaga K, Fisher C, Matsubara H 2000 Jpn. J. Appl. Phys.39 L48.
  • 5Kaukonen H P, Nieminen R M 1992 Phys. Rev. Lett. 68 620.
  • 6Kelires P C 1994 Phys. Rev. Lett. 73 2460.
  • 7Saada D, Adler J, Kalish R 1999 Phys. Rev. B 59 6650.
  • 8Vita A D, Galli G, Car R, Canning A 1996 Appl. Surf. Sci. 104 298.
  • 9Allen M P, Tildsley D J 1987 Computer Simulation of Liquids(Oxford: Oxford University) p21.
  • 10Roberts N, Needs R J 1990 Surface Sci. 236 112.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部