期刊文献+

一般化凸空间上的共存定理与有限交性质

COEXISTENT THEOREMS AND FINITE INTERSECTION PROPERTY ON GENERALIZED CONVEX SPACES
下载PDF
导出
摘要 在本文 ,我们根据已有的一般化凸空间上的不动点定理给出了两个共存定理 ,并利用此定理讨论了有限交性质 ,这些结论对文献 [1 ]和 [2 ]中的相应结论进行了改进和一般化 . In this paper, we use the well-known fixed point theorem on generalized convex spaces to give two coexistent theorems, and then use ito to discuss the finite intersection property. These results improve and generalized the corresponding results in the references[1] and [2].
作者 朴勇杰
出处 《哈尔滨师范大学自然科学学报》 CAS 2003年第5期17-19,共3页 Natural Science Journal of Harbin Normal University
关键词 共存定理 有限交 不动点定理 G-凸空间 Г-凸子集 多面体 G-convex spaces Γ-convex subset coexisten Polytope The finite intersection property
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Park Sehie. New Subclasses of Generalized Concex Spaces[J]. Fixed Point Theory and Applications (Y J Cho, ed. ), Nova Sci Publ, New-York, 2000. 91 - 98.
  • 2[2]Lassonde M. On the Use of KKM Multimaps in Fixed Point Theory and Related Topics[J]. J Math Anal Appl, 1983,97:151 - 201.
  • 3[3]Horvath C D. Contractibility and Generalized Convexity[J]. J Math Anal Appl, 1991,156:341 - 357.
  • 4[4]Tan K K, Zhang X L. Fixed Point Theorems on G- convex Spaces and Applications[J]. Nonlinear Funct Anal Appl, 1996, (1) :1 - 19.
  • 5[5]Kim W K. Some Applications of Kakutani Fixed Point Theorem[J]. J Math Anal Appl, 1987,121:119 - 122.
  • 6[6]Shih M H, Tan K K. Covering Theorems of Convex Sets Related to Fixed Point Theorems[J]. Nonlinear and Convex Analysis(Proc. in honor of Ky Fan), Marcaldekker Inc, New-York and Basel,1987. 235-244.
  • 7[7]Park Sehie, Lee W B. A Unified Approach to Generalized KKM Maps in Generalized Convex Spaces[J]. J Nonlinear and Convex Anal, 2001,2.
  • 8[8]Park Sehie. Elements of the KKM Theory for Generalized Convex Spaces [ J ] Korean J Comp Appl Math, 2000,7:1 - 28.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部