期刊文献+

利用区域映射模型研究样本集的空间分布

Analysis of sample set's spatial distribution using region mapping model
下载PDF
导出
摘要 针对样本集在神经网络中所起到的重要作用,用大量的仿真试验研究了区域映射模型输出与输入空间的拓扑相似性。结果表明,区域映射模型可实现从高维空间到二维空间具有拓扑相似性的映射,因此,可以作为研究样本集空间分布的新的可视化工具,同时为样本集的组织和筛选提供了新的手段。仿真试验也直观地揭示了隐层单元数和权值在神经网络中所起的作用,即隐层单元数用来调节投影的角度,权值则用来调整样本空间的输出图像在输出空间中的位置。 The topological similarities between the output distribution and the input distribution of the region mapping model are investigated through a lot of computer simulations. Different sample sets with different shapes are input into the region mapping model, and the network outputs are observed. The simulation results show that the output distribution of the region mapping model can reflect the shape, convexity, concavity of the sample set in the input space and the relative position relationship between different regions in the sample set. So the region mapping model can realize the map with topological similarity from the high dimensional space to two-dimensional space, and it provides a new visualization tool for analyzing the spatial distribution of the sample set. The simulations reveal the roles of the number of hidden neurons and network weights in neural networks: the number of hidden neurons adjusts the mapping angle; the weights adjust the position of the output data distribution in the output space. The region mapping model is applied to rearrange the sample set to improve the learning speed of neural network and to delete some undesired samples.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2003年第12期1432-1435,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(6974013)
关键词 区域映射模型 样本集 空间分布 神经网络 拓扑相似性 Computer simulation Mapping Neural networks Visualization
  • 相关文献

参考文献1

二级参考文献2

  • 1[1] RUMELHART D E, MCCLELLAND J L. Parallel distributed processing[M]. MIT Press, 1986.
  • 2[2] WHITE H. Connectionist regression: multilayer feedforware networks can learn arbitrary mapping[J]. Neural Networks, 1990, (3): 535-549.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部