期刊文献+

融合背景模型及颜色特征的感兴趣目标检测 被引量:2

Salient Object Detection Based by Fusing Background Model and Color Feature
下载PDF
导出
摘要 针对传统感兴趣目标检测算法未利用图像自身的先验信息,提出了一种结合图像背景先验信息及颜色特征的感兴趣算法.依据图像边缘区域为一般图像背景的特点,建立了图像背景模型,基于该模型考虑背景区域的差异性,有效避免了目标在图像边缘时造成的漏检现象.通过融合两种显著性特征,得到了最终感兴趣目标.实验结果表明:该算法检测感兴趣目标时,检测准确性较其他主流检测算法提高了10%. Since the image’s ow n prior information is not used by the traditional salient object detection algorithm ,an algorithm is proposed w hich combines the prior information on the image background with the color features .Based on the features of image edge region being the general image background ,an image background model is built .Because the regional differences in the background are considered in the model ,missing the objects in the edges of the image can be avoided .Then the two significant features are fused to obtain the final goal .Experimental results show that this algorithm increases the detection accuracy by 10% compared with other popular detection algorithms .
作者 张艳邦 张芬
出处 《西安工业大学学报》 CAS 2015年第7期546-549,共4页 Journal of Xi’an Technological University
基金 陕西省自然科学基础研究计划项目(2013JM1014 2014JM1032) 陕西省教育厅科学研究计划项目(14JK1797) 咸阳师范学院高层次人才引进计划项目(14XSYK005) 咸阳师范学院科研基金资助项目(13XSYK009)
关键词 背景模型 目标检测 背景先验信息 颜色特征 background model object detection background priors color feature
  • 相关文献

参考文献10

  • 1Hou X,Zhang L.Saliency detection:A spectral residual approach. CVPR’’07. IEEE Conference on Computer Vision and Pattern Recognition . 2007
  • 2Ali Borji,Laurent Itti.State-of-the-Art in Visual Attention Modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2013
  • 3Radhakrishna Achanta,Appu Shaji,Kevin Smith.SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2012
  • 4ACHANTA R,HEMAMI S,ESTRADA F, et al.Frequency-tuned salient region detection. IEEE Conference on Computer Vision and Pattern Recognition . 2009
  • 5Itti, Laurent,Koch, Christof,Niebur, Ernst.Model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1998
  • 6Ma Y F,Zhang H J.Contrast-based image attention analysis by using fuzzy growing. Proceedings of the 11th ACM International Conference on Multimedia . 2003
  • 7Y. Zhai,M. Shah.Visual attention detection in video sequences using spatiotemporal cues. ACM international conference on Multimedia . 2006
  • 8HAREL J,KOCH C,PERONA P.Graph-based visual saliency. Advances inNeural Information Processing Systems . 2007
  • 9Tie Liu,,Jian Sun,Nan-ning Zheng,Xiaoou Tang,Heung-Yeung Shum.Learning to Detect A Salient Object. 2007 IEEE Conference on Computer Vision and Pattern Recognition . 2007
  • 10Wei Y,Wen F,Zhu W, et al.Geodesic saliency using background priors. Computer Vision–ECCV 2012 . 2012

共引文献10

同被引文献18

  • 1丁玉兰.人机工程学[M].北京:北京理工大学出版社,2005.
  • 2张全,顾振宇,明新国.复杂人-机界面色彩设计系统研究[C]//第九届人-机-环境系统工程大会论文集.丹东:第九届人-机-环境系统工程大会,2009:165.
  • 3JACOBSON N, BENDER W. Color as a Determined Communication[J]. IBM Systems Journal, 1996, 35 (3/4) :526.
  • 4WYSZECKI G,STILES W S. Color Science[M]. New York:Jonh Wiley & Sons,2000.
  • 5ISAAC J A, LUQUETTI D S, DOUGLAS V T, et al. The Use of a Simulator to Include Human Factors Issues in the Interface Design of a Nuclear Power Control Room [J].Journal of Loss Prevention in the Process Indus- tries,2008,21 (3) :227.
  • 6ITTI L, KOCH C, NIEBUR E. A Model of Saliency- based Visual Attention for Rapid Scene Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(11) : 1254.
  • 7MAY F,ZHANG H J. Contrast-based Image Atten- tion Analysis by Using Fuzzy Growing[C]// Pro- ceedings of the llth ACM International Conference on Multimedia. Berkeley:Eleventh ACM International Conference on Multimedia, 2003:374.
  • 8SUN Y, FISHER R. Object-based Visual Attention for Computer Vision [J]. Artificial Intelligence, 2003,146(1) :77.
  • 9STAS G,LIHI Z M. Context-Aware Saliency Detec- tion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34 (10) : 1915.
  • 10JEFF J. Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules[M]. Sin- gapore: Elsevier, 2011.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部