期刊文献+

采用非经典感受野交互的钢轨紧固件螺母中心多特征分级定位算法 被引量:2

A Multi-Feature Hierarchical Location Method for Railway Fastener Hexagon Nut Based on R-NCRF
下载PDF
导出
摘要 针对铁路紧固件图像易受周边环境干扰、导致其几何中心定位精度不理想的问题,提出一种紧固件螺母中心多特征分级定位算法。该算法在优化蝶形非经典感受野模型的刺激区和抑制区的基础上,设计一种路径非感受野交互模型以匹配紧固件特征,具备优异的干扰噪声抑制能力,能精确提取紧固件圆轮廓和六角轮廓特征。根据轮廓特征,多特征分级定位算法利用六角边之间的角度约束和距离约束关系,实现了不完整轮廓下的中心精确定位。实验结果表明:该算法在正常条件下和受光照影响条件下使圆检测准确率分别提高了3%和24%,具备干扰环境下的紧固件中心精确定位能力。 A multi-feature hierarchical positioning algorithm for the fastener nut center is proposed to solve the problem that the railway fastener image is vulnerable to the surrounding environment and its geometric center positioning accuracy is not ideal. A route non-receptive field interaction model is designed to match the fastener features based on the optimization of the stimulation and suppression zones of the butterfly non-classical receptive field model. The proposed model has excellent interference noise suppression ability and can accurately extract the circular contour and hexagonal contour of a fastener. Based on the contour feature, the multi-feature hierarchical positioning algorithm utilizes the angular constraint and the distance constraint relationship among the hexagonal edges to achieve accurate center positioning from incomplete contour. Experimental results show that the accuracy of the circle detection under normal conditions and under the influence of illumination increases by 3% and 24%, respectively, and the algorithm is capable of locating the position of the fastener center accurately under interference environments.
作者 彭智勇 马子骥 王超 刘宏立 PENG Zhiyong;MA Ziji;WANG Chao;LIU Hongli(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第4期108-114,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61771191) 湖南省自然科学基金资助项目(2017JJ2052)
关键词 紧固件螺母 非经典感受野 多特征分级定位 fastener nut machine vision non-classical receptive field multi-feature hierarchical location
  • 相关文献

参考文献3

二级参考文献32

  • 1肖新标,金学松,温泽峰.钢轨扣件失效对列车动态脱轨的影响[J].交通运输工程学报,2006,6(1):10-15. 被引量:45
  • 2左建中,尹辉,陈贤青.小波变换在螺纹边缘检测中的应用[J].制造业自动化,2007,29(1):33-34. 被引量:7
  • 3MORRONE M C, NAVANGIONE A, BURR D. An adaptive approach to scale selection for line and edge detection [J]. Pattern Recognition Letters, 1995, 16 (7) : 667-677.
  • 4MALLAT S, HWANG W L. Singularity detection and processing with wavelets [J]. Trans on Information Theory, 1992,38(2) : 617-623.
  • 5AYDIN T. Multidirectional and multiscale edge detection via mband wavelet transform[J]. IEEE Trans on Image Processing, 1996,5(9) : 1370-1377.
  • 6CANNY J. A computational approach to edge detection [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986,8(6): 679-698.
  • 7ZHANG Renyan, ZHAO Guoling, SU Li. A new edge detection method in image processing [C]//IEEE International Symposium on Communications and Information Technology. Piscataway, NJ, USA: IEEE, 2005 : 445-448.
  • 8刘煜,李言俊,张科.一种多像素图像边缘提取方法[J].光子学报,2007,36(2):380-384. 被引量:26
  • 9王玥玥,王秋光.基于图像边缘信息的2维阈值分割方法[J].中国图象图形学报,2007,12(1):78-81. 被引量:33
  • 10SINGH M, SINGH S, JAISWAL J, et al. Autonomous rail track inspection using vision based system[C] // IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. Alexandria : IEEE, 2006 : 56-59.

共引文献92

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部