期刊文献+

关于“3-1”数列的几个性质

Some Properties of '3-1' Sequence
下载PDF
导出
摘要 研究了Lucian Tutescu提出的50多个数论问题中的第四个问题‘3-1’数列的性质,运用初等数论和组合数学的方法,得出了‘3-1’数列的一般项公式、生成函数、前n项部分和公式以及递归公式,结果表明在数论中,许多特殊数列都有其规律性,并可以用同样的方法加以研究.. The properties of sequence '3-1',the fourth of 50 plus problems raised by Lucian Tutscu,a great Romanian expert of number theory at Fratii Buzesti University,were studied.With the application of primary number theory and methods in combinatorics,formula of the general term of sequence '3-1' were obtained,together with its generative function,formula for the partial sum of its beginning nth-terms,and its recursive formula.The result shows that there are rules for many special sequences,which can be studied with the same methods.
出处 《西安文理学院学报(自然科学版)》 2007年第1期66-69,共4页 Journal of Xi’an University(Natural Science Edition)
基金 陕西省专项计划科研项目(04JK132) 西安文理学院校内育苗基金(05SKY110)
关键词 '3-1’数列 一般项公式 生成函数 '3-1' sequence general formula general function
  • 相关文献

参考文献2

二级参考文献9

  • 1ZHANG Wenpeng.Some identities involving the Fibonacci numbers[J].The Fibonacci Quarterly,1997,35:225-229.
  • 2ZHAO Fengzhen,WANG Tianming.Genaralizations of some identities involving the Fibonacci numbers[J].The Fibonacci Quarterly,2001,39:165-167.
  • 3BORWEIN P,ERDEYI T.Polynomials and Polynomials Inequalities[M].New York:Springer-Verlag,1995.
  • 4ZHANG Wen-peng.Some identities involving the Fibonacci numbers[J].The Fibonacci Quarterly,1997,35:225-229.
  • 5ZHAO Feng-zhen,WANG Tian-ming.Genaralizations of some identities involving the Fibonacci numbers[J].The Fibonacci Quarterly,2001,39:165-167.
  • 6数学手册编写组.数学手册[M].北京:人民教育出版社,1997.606-617.
  • 7BORWEIN P,ERDéLYI T.Polynomials and Polynomials Inequalities[M].New York:Springer-Verlag.1995.
  • 8刘端森,李超.盖根堡多项式以及斐波那契数和鲁卡数的一些恒等式[J].延安大学学报(自然科学版),2003,22(1):7-9. 被引量:33
  • 9LIUDuan-sen,LIChao,YANGCun-dian.Some Identities Involving Square of Fibonacci Numbers and Lucas Numbers[J].Chinese Quarterly Journal of Mathematics,2004,19(1):67-68. 被引量:11

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部