期刊文献+

基于微变等效电路的差分—共基负反馈放大器的仿真与分析 被引量:2

The Simulation and Analysis of Differential Common Basis Negative Feedback Amplifier Based on Micro-change Equivalent Circuit
下载PDF
导出
摘要 在使用稳压管较好解决直流电平配置与输入信号有效放大的基础上,设计了差分-共基电流串联负反馈放大电路。经静态电流计算得晶体管交流等效电阻,按晶体管小信号模型得微变等效电路。对等效电路开、闭环仿真结果与理论计算相对误差分别是0.61%和1.01%,吻合很好,说明分析方法正确。对基本电路仿真与理论的相对误差分别是2.89%和0.69%,基本一致。另外从等效电路和基本电路仿真中都得到反馈电压,求得反馈系数、闭环增益,它们也与理论计算相符合,验证了反馈放大器中基本关系式。 Based on DC level configuration and amplify input signal,Bg using voltage- regulater-tube. current- series negative feedback circuit with differential common basisis designed in the paper. AC equivalent resistance is derived by calculating the quiescent current,micro- change equivalent circuit is achieved by small signal model of transistor. The relative error between the simulation results and theoretical values of open and close loop circuits are 0. 61% and 1.01% respectively. The results demonstrate that they are in good agreement,and the correctness of the method is proved. The relative error between the simulation results and theoretical values for basic circuit are 2. 89% and 0. 69%,they are almost the same. In addition,the feedback voltage,the coefficient of feedback and the gain of closed- loop are also derived from simulation of micro- change equivalent circuit and basic circuit,they are consistent with the theoretical calculation,and the basic formulation of feedback amplifier is proved.
出处 《北京电子科技学院学报》 2014年第2期74-76,80,共4页 Journal of Beijing Electronic Science And Technology Institute
基金 安徽省教育厅质量工程(专业综合改革试点2012zy308 线性电子线路资源共享课2012gxk057) 安徽省重点资助教学研究项目:2013jyxm097
关键词 互阻增益 负反馈 差分-共基放大电路 微变等效电路 transimpedance gain negative feedback differential common basis amplifier circuit micro-change equivalent circuit
  • 相关文献

参考文献2

二级参考文献8

  • 1KennedyJ ?. Eberhart R C. A New Optimizer Using Particle Swarm Theory[C]/ /Proc of the 6th International Symposium on Micro Machine and Human Science. Nagoya:[so n.], 1995 :39-43.
  • 2Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing Hierarchical Particle Swarm Optimizer with Time?Varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(8): 240-255.
  • 3Sari A, Espanet C, Hissel D. Particle Swarm Optimization Applied to the Co-design of a Fuel Cell Air Circuit[J].Journal of Power Sources, 2008, 179(1): 121-131.
  • 4Pedersen M E H, Chipperfield AJ. Simplifying Particle Swarm Optimization[J]. Applied Soft Computing, 2010, 10(2): 618-628.
  • 5Mousa A A, El-Shorbagy M A, Abd-El-Wahed W F. Local Search Based Hybrid Particle Swarm Optimization Algorithm for Multiobjective Optimization[J]. Swarm and Evolutionary Computation, 2012, 3: 1-14.
  • 6郭新辰,吴希,陈书坤,吴春国.基于RBFNN和PSO求解第二类Volterra积分方程的混合方法[J].吉林大学学报(理学版),2010,48(4):658-661. 被引量:3
  • 7杨一军,陈得宝,李素文,毛培.差分-运放电流串联负反馈的理论计算与仿真分析[J].合肥师范学院学报,2010,28(6):29-30. 被引量:3
  • 8杨一军,陈得宝,王江涛,方振国,侯俊钦,李峥,李素文.负反馈放大器稳定性的理论探讨与EWB仿真[J].天津理工大学学报,2011,27(4):8-10. 被引量:3

共引文献1

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部