期刊文献+

一种基于隐私保护的云端视频监控移动物体检测方法

A Moving Object Detection Method of Surveillance Video Based on Privacy Protection in the Cloud
下载PDF
导出
摘要 随着云计算技术的快速发展,许多监控视频数据的存储和处理被外包到云端。然而,把原始数据直接发送到云端会威胁到我们的隐私安全。利用云计算技术在保证视频监控应用的同时隐私信息不被泄露,是目前亟待研究和解决的热点问题。针对这一问题,本文研究并实现了一种基于反色、置乱、矩阵乘的有效视频帧加密方法,使用者可以将加密后的视频保存在云端而不需要担心隐私泄露,同时在加密的视频中还可以有效地进行移动物体的快速检测。实验结果表明:该方法与在未加密的视频帧中进行移动物体检测具有相似的精度。 With the rapid development of cloud computing technology,more and more surveillance video data and business are stored and migrated to the cloud; however,the raw data directly sent to the cloud will be a threat to the privacy of users. How to make effective use of cloud computing technology and ensure that the video surveillance applications while private information will not be disclosed now becomes a hot issue. In order to solve the problem,an effective video encryption method is studied and implemented; user can save the video encrypted in the cloud without loss of privacy,while an encrypted video can also be used to detect moving objects. Experimental results show that the method has similar accuracy with detecting mobile object in unencrypted video frame.
出处 《北京电子科技学院学报》 2015年第4期55-60,共6页 Journal of Beijing Electronic Science And Technology Institute
基金 国家自然科学基金<混沌公钥密码算法的设计与分析研究>(No.61170037)(No.61402021)
关键词 隐私保护 云计算 移动物体检测 视频监控 Privacy protection Cloud computing Moving object detection Video surveillance
  • 相关文献

参考文献3

二级参考文献38

  • 1Stauffer C, Gfimson W. Adaptive background mixture models for real-time tracking [ C ] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Col-lins. CO: IEEE, 1999, 2: 246-252.
  • 2Shimada A, Arita D, Taniguchi R. Dynamic control of adaptive mixture-of-gaussians background model [ C ] // Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance. Sydney, Australia: IEEE, 2006.
  • 3Nonaka Y, Shimada A, Nagahara H, et al. Evaluation report of integrated background modeling based on spatio-temporal features [ C ] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Provi- dence, RI: IEEE, 2012, 6: 9-14.
  • 4KaewTraKulPong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection [ C ] // Proceedings of 2nd European Workshop on Adavanced Video Based Surveillance Systems. New York : Kluwer Academic Publishers. 2002 ; 135-144.
  • 5Liu Z, Huang K. Foreground object detection using top-down in- formation based on EM Framework [ J ]. IEEE Transactions on Image Processing, 2012, 21 (9): 4204-4217.
  • 6Karl J, Li K, Tang, Jet al. Background modeling method based on improved multi-Ganssian distribution [ C ] //Proceedings of IEEE International Conference on Computer Application and Sys- tem Modeling. Taiyuan: IEEE, 2010: 214-218.
  • 7Li Y, Tian H. An improved gaussian mixture background model with real-time adjustment of learning rate [ C ] //Proceedings ofIEEE International Conference on Information Networking and Automation. Kunming: IEEE, 2010 : 512-515.
  • 8Liu P, Lee B. Fast background modeling object detection using PCA and temporal difference[ C] // Proceedings of IEEE Inter- national Conference on Advance in Engineering, Science and Management. Nagapattinam, Tamil Nadu : IEEE, 2012, 3 : 234- 238.
  • 9Tanaka T, Shimada A, Arita D, et al. Non-parametric back- ground and shadow modeling for object detection [ C ] // Pro- ceedings of 8th Asian Conference on Computer Vision. Tokyo: IEEE, 2007, 9: 159-168.
  • 10Vemulapalli R, Aravind R. Spatio-temporal nonparametric back- ground modeling and subtraction [ C ] // Proceedings of IEEE 12th International Conference on Computer Vision Workshops. Kyoto: IEEE, 2009,10: 1145-1152.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部