摘要
研究一个带有食饵保护的竞争型捕食者-食饵交错扩散模型.首先讨论弱耦合反应扩散系统正常数平衡解的局部和全局渐近稳定性;其次分析交错扩散系数对正常数平衡解稳定性的影响,证明当交错扩散系数充分大时会产生Turing不稳定现象.
A competitive cross-diffusion predator-prey model is studied in this paper.Firstly,the local and global stability of a positive equilibrium point of weakly coupled reaction-diffusion system is discussed.Secondly,the effect of cross-diffusion coefficient on the stability of the positive equilibrium point is discussed.The results show that cross-diffusion can induce Turing instability if the cross-diffusion coefficient is sufficiently large.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2014年第2期1-5,16,共6页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11061031)