期刊文献+

网络入侵检测系统中的数据缩减技术 被引量:3

Data Reduction in Network Based on the Intrusion Detection System
下载PDF
导出
摘要 在进行事件分析之前,网络入侵检测系统首先要面对数据缩减的问题。以ANIDS为背景,分析了两种重要的数据缩减技术:相关特征子集选择和特征再构造。提出了一种基于Wrapper方法的最优特征子集选取算法SRRW。在考虑学习算法偏置的情况下,通过识别强相关特征并引入约束,能够更快地搜索并获得最优的相关特征子集。从特征再构造角度出发实现数据缩减,并通过因子负荷量矩阵分析了原始特征之间的相关性。 NIDSs deal with the problem of data reduction before analyzing the events. Two important measures used in ANIDS are proposed: FSS and new feature construction. A novel algorithm named SRRW is put forward first, which can produce OFS by recognizing all strongly relevant features and restrict them in searching process. A feature construction method is used to get the OFS. The correlations between the original features can be analyzed by factor loading matrix.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2003年第6期16-20,共5页 Journal of National University of Defense Technology
关键词 网络入侵检测 数据缩减 相关特征选取 主成分分析 NIDS data reduction relevant feature selection PCA
  • 相关文献

参考文献2

二级参考文献6

  • 1Mukkamala S, Sung AH, Abraham A. Identifying Key Variables for Intrusion Detection Using Soft Computing Paradigms[ A]. The IEEE International Conference on Fuzzy Systems FUZZ-IEEE'03[ C]. St Louis, MO, USA, 2003.
  • 2Mukkamala S, Janoski C, Sung AH. Comparison of Neural Networks and Support Vector Machines in Intrusion Detection[ A]. Workshop on Statistical and Machine Learning Techniques in Computer Intrusion Detection[ C]. Baltimore, Maryland, USA, June 11 - 13, 2002.
  • 3Mukkamala S, Sung AH. Audit Data Reduction Using Neural Networks and Support Vector Machines[ A]. Digital Forensics Research Workshop ( DFRWS - 2002) [ C]. Syracuse University, Center for Systems Assurance, August 7 - 9, 2002.
  • 4Mukkamala S, Janoski G, Sung AH. Monitoring Information System Security[ A]. Proceedings of the 11th Annual Workshop on Information Technologies & Systems[ C]. New Orleans, Louisiana, USA,2001. 139- 144.
  • 5Mukkamala S, Janoski G, Sung AH. Intrusion Detection Using Neural Networks and Support Vector Machines[ A]. Proceedings of IEEE International Joint Conference on Neural Networks[ C]. Honolulu,Hawaii, USA, 2002. 1702 - 1707.
  • 6Vladimir VN. The Nature of Statistical Learning Theory[ M]. New York: Springer, 1995.

共引文献63

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部