期刊文献+

智能支持的顾客需求分析与综合工具开发关键技术 被引量:3

Key Techniques to Develop VOC Analyzing and Synthesizing Intelligent Tool
下载PDF
导出
摘要 现代企业在产品设计阶段充分地获取和理解顾客需求(VOC),能有效缩短产品的设计及上市时间,降低成本,提高产品质量。企业在产品开发中最大程度地满足VOC,进行创新设计是企业生存的基础和关键。本文将人工智能和Internet网络技术应用于VOC提取与分析过程,建立了产品VOC分析综合工具的系统结构,并重点阐述了VOC模糊建模、聚类分析与综合模型实现的关键技术。在EIPH测控仪新产品开发实践中的应用验证了本模型的有效性。 Modern manufacturing organizations pay more attention to Voice of Customer (VOC) so that they can reduce the time between conceptualization of a new product and its final commercialization and know what customers want and continue to purchase. Understanding VOC'needs, doing well and early,are crucial for their survival.In this paper, by combining to development of instrument product, the VOC synthesizing analyzing tool framework based on the artificial intelligence and internet techniques is established. The VOC clustering analyzing and synthesizing model based on fuzzy method is emphatically studied and built. In the developing of EIPH instrument product, the validity of model is verified.
作者 商建东
出处 《河南科技大学学报(自然科学版)》 CAS 2003年第4期48-52,共5页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金资助项目(60203018) 教育部科学研究重点项目(200202) 河南省自然科学基金资助项目(0211051000)
关键词 顾客需求分析 企业管理 产品设计 产品质量 VOC 人工智能 网络技术 Product design Voice of customer Fuzzy clustering Model
  • 相关文献

参考文献4

二级参考文献9

  • 1Krause F L.Method For Quality-Driven Product Development[J].Annuals of the CIRP,1993,42(1):151-154.
  • 2Kimura F.Design of Right Quality Products for Total Life Cycle Support Sustainable[J].Product Development,1996,(3).
  • 3Shang J D.Chen K N.Research on the Automation Instrument Integration Decision Support System for Quality-Driven Product Development[A].Internation Conference on Advanced Manufacturing Technology'99[C].Xi'an,China,1999:820-825.
  • 4Backhaus K.Investitionsgutermarketing[]..1990
  • 5Otto K N,Ahrens G.Eine Methode zur Definition technischer Produkt- anforderungen[].Konstruktion.1997
  • 6Eisele J,Kreusel J.Wettbewerbsvorteile durch effiziente Marktforschung[].Absatzwirtschaft.1997
  • 7Wpping J.Logistikgerechte Produktstrukturen bei marktorientierter Vari- antvielfalt[].io Management Z.1998
  • 8陈本永,吴昭同,余忠华.保质设计系统智能化的研究[J].机械设计与制造,1999(3):41-42. 被引量:2
  • 9舒慧林,刘继红,钟毅芳.计算机辅助机械产品概念设计研究综述[J].计算机辅助设计与图形学学报,2000,12(12):947-954. 被引量:48

共引文献16

同被引文献31

  • 1郭伟,胡明艳.基于Web源的客户需求获取及分析方法[J].计算机集成制造系统,2004,10(9):1165-1170. 被引量:15
  • 2张治.DSS模型库管理系统设计[J].河南科技大学学报(自然科学版),2004,25(5):38-42. 被引量:10
  • 3仝勖峰,朱名铨,王东勃,姜晓鹏.大规模定制中应用聚类分析法获取客户需求[J].航空制造技术,2006,49(9):98-100. 被引量:1
  • 4Lanekriet G R G, Ghaoui L E, Bhattacharyya C, et al. Proceedings of advances in neural information processing systems [C]. Department of EECS University of California, Berkeley, 2002.
  • 5Hsu C W, Lin C J. A comparision of methods for muhiclass support vector machines[J]. IEEE Transaction on Neural Networks, 2002, 13(2) : 415-425.
  • 6Thomas G D, Bakiri G. Solving multiclass learning problems via error-correcting output codes [J ]. Journal of Artifieal Intelligence Research, 1995,2(2):263-286.
  • 7TenenbaumJ B, Silva de V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290 (12) : 2 319 - 2 323.
  • 8Roweis S T, Lawrance K S. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(12): 2 323-2 326.
  • 9Zhang Junping, Li Stan Z. Adaptive nonlinear auto-associative modeling through manifold learning [ C] // Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hanoi, 2005:599-604.
  • 10Yoav Freund. Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995, 121(2):256 -285.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部