期刊文献+

整合资产收益策略与年金化最优退休决策:异质性风险偏好与规避视角 被引量:1

Integrate Asset Allocation and Optimal Annuitization of Retirement:Perspective of Heterogeneity Risk Aversion
原文传递
导出
摘要 随着我国老龄化加剧,退休支付策略中阶段提取计划备受老年人青睐。为深入研究阶段提取计划的价值,本文在含有资本市场随机性和寿命不确定性的效用函数中研究不同退休支付计划,基于不同风险规避程度评价这些退休支付计划,在此基础上,整合资产收益和年金化退休决策。研究显示,与选择退休时全部年金化作比较,整合策略能提高中低风险规避退休者25%~50%的福利。如果考虑个人在退休后最优时点转向购买固定年金引起的福利改变,这提供给退休者年轻时从股票溢价受益的机会,也可使退休者开发死亡率信用。研究表明,对于适中的风险规避者而言,最优转换年龄介于75—80岁之间。 This paper studied different retirement payment schemes in utility function,which included randomness of capital market and life uncertainty,and evaluated these schemes based on different risk-avoiding levels.The result shows that integrated strategies can enhance retirees' wellbeing by 25%-50%for low/moderate levels of risk aversion when compared to full annuitization at retirement.Finally,we examined how welfare changes if the consumer is permitted to switch to a fixed annuity at an optimal point after retirement.This affords the retiree the chance to benefit from the equity premium when younger,and exploit the mortality credit in later life.For moderately risk-averse retirees,the optimal switching age lies between 75 and 80.
作者 王云多
出处 《现代财经(天津财经大学学报)》 CSSCI 北大核心 2016年第9期27-36,共10页 Modern Finance and Economics:Journal of Tianjin University of Finance and Economics
基金 国家社科基金(16BRK016) 教育部人文社会科学青年基金(15YJC840037)
关键词 资产分配 年金化 退休决策 asset allocation annuitization retirement policies
  • 相关文献

参考文献18

  • 1Russell Gerrard,Steven Haberman,Elena Vigna.??Optimal investment choices post-retirement in a defined contribution pension scheme(J)Insurance Mathematics and Economics . 2004 (2)
  • 2David Blake,Andrew J.G. Cairns,Kevin Dowd.??Pensionmetrics 2: stochastic pension plan design during the distribution phase(J)Insurance Mathematics and Economics . 2003 (1)
  • 3Moshe A. Milevsky,Virginia R. Young.??The timing of annuitization: Investment dominance and mortality risk(J)Insurance Mathematics and Economics . 2006 (1)
  • 4Moshe A.Milevsky,Kristen S.Moore,Virginia R.Young.??ASSET ALLOCATION AND ANNUITY‐PURCHASE STRATEGIES TO MINIMIZE THE PROBABILITY OF FINANCIAL RUIN(J)Mathematical Finance . 2006 (4)
  • 5S.Browne,M. A.Milevsky,T. S.Salisbury.??Asset Allocation and the Liquidity Premium for Illiquid Annuities(J)Journal of Risk and Insurance . 2003 (3)
  • 6翟永会,王晓芳.退休后企业年金的最优投资策略及领取方案研究[J].产业经济研究,2009(6):52-59. 被引量:7
  • 7郭磊.寿命不确定与企业年金退休后投资决策[J].同济大学学报(自然科学版),2009,37(12):1712-1714. 被引量:7
  • 8王云多.整合工作、退休与一生收益决策的最优投资组合研究[J].中国管理科学,2014,22(6):27-33. 被引量:7
  • 9Chen,Milevsky.Merging asset allocation and longevity insurance:an opti mal perspective on payout annuities. Journal of Financial Planning . 2003
  • 10Brown,J.R,J.M.Poterba.Joint life annuities and annuity demand by married couplesThe Journal of Riskand Insurance,2000.

二级参考文献40

  • 1郭磊,陈方正.退休后企业年金最优投资决策[J].系统工程,2006,24(2):78-82. 被引量:7
  • 2张弛,黄善春.国外企业年金发展进程及其启示[J].福建论坛(人文社会科学版),2007(3):36-38. 被引量:4
  • 3叶燕程,高随祥.缴费确定型企业年金最优投资策略研究[J].中国科学院研究生院学报,2007,24(2):149-153. 被引量:10
  • 4于小东,吴佳琦.缴费确定型企业年金领取阶段的最佳策略[J].经济评论,2007(3):141-147. 被引量:2
  • 5Wolfram, J. H. , et al. 2008, "Following the Rules : Intergrating Assset Allocation and Annitization in Retirement Portfolios" ,Insurance : Mathematis and Economics ,42:396-408.
  • 6Blake, D. ,2003, "Pensionmetrics2 : Stochastic Pension Plan Design during the Distrbution Phase", Insurance : Mathematis and Economics ,33:29-47.
  • 7Kapar, S. , Orszag, J. M. , 1999, A Portfolio Approach to Investment and Annuitization during Retirement, In:Proceedings of the Third International Congress on Insurance : Mathematis and Economics, London.
  • 8Milevsky, M. A. , Robinson, C. ,2000, "Self-annuitization and Ruin in Retirement", North American Actuarial Journal, 4:112-129.
  • 9Charupat, N. , Milevsky, M A. , 2002, "Optimal Assset Allocation in Life Annuities : A Note", Insurance : Mathematis and Economics, 30 : 33-47.
  • 10赵菲菲.我国企业年金制度推行的障碍及对策.管理世界,2007,(2).

共引文献12

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部