期刊文献+

改进的多扩展目标PHD滤波算法

Improved Multi Extended Target PHD Filtering Algorithm
下载PDF
导出
摘要 在扩展目标产生量测密度差异较大的情况下,传统的基于距离划分的多扩展目标高斯混合概率假设密度(ET-GM-PHD)滤波算法计算量大,跟踪效果不佳。针对这个问题,提出了一种改进的ET-GM-PHD滤波算法,该算法首先通过局部异常因子(LOF)检测对量测集进行杂波的滤除,然后采用共享最近邻(SNN)相似度为量测划分准则。SNN相似度体现了量测分布的局部信息,考虑了量测周围的量测信息,因此利用SNN相似度划分量测密度差别较大的量测集时,划分效果比较理想。提出的算法相较于传统算法,减少了运行时间,提升了跟踪的稳定性。 When the density of extended target producing varies greatly,the calculation of traditional multi extended target Gauss mixture probability hypothesis density( ET-GM-PHD) filtering algorithm based on the distance division is large,and the tracking effect is poor. To solve this problem,an improved ET-GM-PHD filtering algorithm is proposed. Firstly,the algorithm is filtered through the local outlier factor( LOF) detection set,and then an improved ET-GM-PHD filtering algorithm is obtained by using the shared nearest neighbor( SNN) similarity as the metric division criterion. SNN similarity reflects the local information of measurement distribution and considers the measurement information around the measurements. So,there is a better partitioning result of using the SNN similarity to divide the measurement sets when measurement density difference is great. The algorithm proposed can reduce the running time and improve the tracking stability compared with the traditional algorithm.
作者 彭聪 王杰贵 朱克凡 程泽新 PENG Cong;WANG Jie-gui;ZHU Ke-fan;CHENG Ze-xin(National University of Defense Technology,College of Electronic Countermeasures,Anhui Hefei 230037,China)
出处 《现代防御技术》 2019年第1期97-104,110,共9页 Modern Defence Technology
关键词 目标跟踪 扩展目标 多扩展目标高斯混合概率假设密度滤波器 量测划分 局部异常因子 共享最近邻相似度 target tracking extended target multi extended target Gauss mixture probability hypothesis density(ET-GM-PHD) filter measurement division local outlier factor(LOF) shared nearest neighbor(SNN) similarity
  • 相关文献

参考文献9

二级参考文献176

  • 1田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10
  • 2闫伟,张浩,陆剑峰.一种离群数据挖掘新方法的研究与应用[J].控制与决策,2006,21(5):563-566. 被引量:5
  • 3武良丹,贺西平,张小凤.超声回波参数的高斯与牛顿迭代法计算[J].陕西师范大学学报(自然科学版),2006,34(3):56-58. 被引量:3
  • 4Gelbard R, Goldman O, Spiegler I. Investigating Diversity of Clustering Methods: An Empirical Comparison[J]. Data & Knowledge Engineering, 2007, 63(1): 155-166.
  • 5Frey B J, Dueck D. Clustering by Passing Messages Between Data Points[J]. Science, 2007, 315(5814): 972-976.
  • 6Thedoridis S, Koutroumbas K. Pattern Recognition[M]. 3rd ed. Beijing, China: Publishing House of Electronics Industry, 2010.
  • 7肖辉,龚薇.基于可达邻域的异常检测算法[J].计算机工程,2007,33(17):74-76. 被引量:4
  • 8KOCH J W.Bayesian approach to extended object and cluster tracking using random matrices[J].IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):1042-1059.
  • 9FELDMANN M,FRANKEN D,KOCH J W.Tracking of extended objects and group targets using random matrices[J].IEEE Transactions on Signal Processing,2011,59(4):1409-1420.
  • 10BAUM M,HANEBECK U D.Random hypersurface models for extended object tracking[C]// Proceedings of International Symposium on Signal Processing and Information Technology.Piscataway,NJ,USA:IEEE,2009:178-183.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部