莱布尼兹公式及其推广
被引量:1
The Extensions of Leibniz Formula
摘要
将求两个函数的乘积的高阶导数的莱布尼兹公式作了多种形式的推广.
In this paper various forms for the Leibniz formula have been given.
出处
《湖南城建高等专科学校学报》
2003年第3期39-40,共2页
Journal of Hunan Urban Construction College
关键词
莱布尼兹公式
高阶导数
高阶混合偏导数
微积分学
Leibniz formula
derivative of higher order
mixed partial derivative of higher order
参考文献1
-
1菲赫金哥尔茨.微积分学教程[M].北京:人民教育出版社,1980..
同被引文献13
-
1Asmussen S, Nerman O, Olsson M. Fitting phase-type distributions via the EM algorithm[J]. Scandinavian Journal of Statistics, 1996, 23 (4): 419- 441.
-
2Haggstrom O, Asmussen S, Nerman O. EMPHT - A program for fitting phase-type distributions[R]. Technical Report, Department of Mathematics, Chalmers University of Technology, Goteborg, Sweden, 1992.
-
3Thummler A, Buchholz P, Telek M. A novel approach for phase-type fitting with the EM algorithm[J]. IEEE Transactions on Dependable and Secure Computing, 2006, 3(3): 245-258.
-
4Bobbio A, Cumani A. ML estimation of the parameters of a PH distribution in triangular canonical form[C]//Balbo G, Serazzi G. Computer Performance Evaluation, Elsevier, Amsterdam, 1992: 33-46.
-
5Horvath A, Telek M. PhFit: A General Phase-Type Fitting Tool[M]. Computer Performance Evaluation: Mod- elling Techniques and Tools, 2002: 82-91.
-
6Bobbio A, Telek M. A benchmark for PH estimation algorithms: Results for acyclic-PH[J]. Stochastic Models, 1994, 10: 661-677.
-
7Bobbio A, Horvath A. Telek M. Matching three moments with minimal acyclic phase type distributions[J]. Stochastic Models, 2005, 21 (2/3): 303 -326.
-
8Cumani A. On the canonical representation of Markov processes modelling failure time distributions[J]. Micro- electronics and Reliability, 1982, 22 (3): 583- 602.
-
9盖云英,包革军.复变函数与积分变换[M].北京:科学出版社,2004.
-
10Harrison P G. Lapalace transform inversion and passage-time distributions in Markov processes[J]. Journal of Applied Probability, 1990, 27: 74-87.
-
1卢锷.从微积分基本定理到格林公式[J].辽宁师范大学学报(自然科学版),1989,12(1):69-71.
-
2许文超.浅谈定积分概念的推广[J].河南广播电视大学学报,1997,12(Z1):6-10.
-
3黄宇中.几个新积分公式及其应用[J].广西大学学报(自然科学版),1993,18(4):58-60.
-
4曹水澄,何静琰.牛顿—莱布尼兹公式在平面,空间域上的推广[J].水利电力机械电子技术,1989(1):13-15.
-
5叶军.莱布尼兹公式求解高阶导数的应用[J].沈阳师范大学学报(自然科学版),2008,26(4):412-413. 被引量:1
-
6王陆军.新高考中的定积分问题[J].中学生天地(高中学习版)(C版),2008,0(12):21-23.
-
7冯楼台.n阶导数的求法探讨[J].高等数学研究,1995,0(3):18-20.
-
8徐政先.利用反函数求定积分[J].枣庄师专学报,1993(4):66-67.
-
9郭天印.求高阶导数的方法与技巧[J].高等数学研究,1994,0(3):34-36. 被引量:1
-
10李信明.牛顿——莱布尼兹公式的推广[J].潍坊学院学报,2001,1(2):23-24. 被引量:5