期刊文献+

莱布尼兹公式及其推广 被引量:1

The Extensions of Leibniz Formula
下载PDF
导出
摘要 将求两个函数的乘积的高阶导数的莱布尼兹公式作了多种形式的推广. In this paper various forms for the Leibniz formula have been given.
作者 肖果能
出处 《湖南城建高等专科学校学报》 2003年第3期39-40,共2页 Journal of Hunan Urban Construction College
关键词 莱布尼兹公式 高阶导数 高阶混合偏导数 微积分学 Leibniz formula derivative of higher order mixed partial derivative of higher order
  • 相关文献

参考文献1

  • 1菲赫金哥尔茨.微积分学教程[M].北京:人民教育出版社,1980..

共引文献3

同被引文献13

  • 1Asmussen S, Nerman O, Olsson M. Fitting phase-type distributions via the EM algorithm[J]. Scandinavian Journal of Statistics, 1996, 23 (4): 419- 441.
  • 2Haggstrom O, Asmussen S, Nerman O. EMPHT - A program for fitting phase-type distributions[R]. Technical Report, Department of Mathematics, Chalmers University of Technology, Goteborg, Sweden, 1992.
  • 3Thummler A, Buchholz P, Telek M. A novel approach for phase-type fitting with the EM algorithm[J]. IEEE Transactions on Dependable and Secure Computing, 2006, 3(3): 245-258.
  • 4Bobbio A, Cumani A. ML estimation of the parameters of a PH distribution in triangular canonical form[C]//Balbo G, Serazzi G. Computer Performance Evaluation, Elsevier, Amsterdam, 1992: 33-46.
  • 5Horvath A, Telek M. PhFit: A General Phase-Type Fitting Tool[M]. Computer Performance Evaluation: Mod- elling Techniques and Tools, 2002: 82-91.
  • 6Bobbio A, Telek M. A benchmark for PH estimation algorithms: Results for acyclic-PH[J]. Stochastic Models, 1994, 10: 661-677.
  • 7Bobbio A, Horvath A. Telek M. Matching three moments with minimal acyclic phase type distributions[J]. Stochastic Models, 2005, 21 (2/3): 303 -326.
  • 8Cumani A. On the canonical representation of Markov processes modelling failure time distributions[J]. Micro- electronics and Reliability, 1982, 22 (3): 583- 602.
  • 9盖云英,包革军.复变函数与积分变换[M].北京:科学出版社,2004.
  • 10Harrison P G. Lapalace transform inversion and passage-time distributions in Markov processes[J]. Journal of Applied Probability, 1990, 27: 74-87.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部