期刊文献+

基于数据挖掘技术的火灾风险预警模型研究 被引量:5

Research on fire risk alert model based on data mining technology
下载PDF
导出
摘要 为了解决城市区域火灾风险预警,以消防大数据资源为基础利用数据挖掘技术建立火灾预警模型。利用潍坊区域火灾信息和环境因素相关信息,采用多种数据挖掘方法对火灾风险统计数据进行模型分析和比较。研究结果表明,在使用支持向量机(SVM)模型以及温度、相对湿度、雨量、风力四项环境属性时模型具有最好的预测效果。基于数据扰动对于结果的影响程度设计算法,分别得到这四种属性对于预测结果重要性的权重值,该结论可用于同类区域构建预测模型时的数据预处理。 In order to solve the fire risk alerted problem in urban area, a fire risk alerted model was set up by using data mining technology on the basis of large fire data resources. Using the data of fire and environment information in Weifang, several data mining methods were used to model and compare the fire risk statistical data. Research showed that, the model has the best fitting effectwhen using support vector machines(SVM) and four environmental attributes(temperature, relative humidity, rainfall, wind force). Design a calculation method based on the influence of data perturbation on the results, obtained the weights of the importance of the four attributes to the prediction results. The results can be used for the data pretreatment of similar area prediction model building.
出处 《消防科学与技术》 CAS 北大核心 2017年第12期1745-1749,共5页 Fire Science and Technology
基金 公安部技术研究计划重点项目"基于CPS的消防设施监控预警及维保管理系统研制"(2016JSYJA23) 公安部技术研究项目计划"瓶装LPG射流火灾发展规律及现场处置技术研究"(2016JSYJC52)
关键词 数据挖掘模型 火灾预警 支持向量机 环境参数 data mining model fire risk alert support vector machines environment parameter
  • 相关文献

参考文献3

二级参考文献34

  • 1诸葛建伟,徐辉,潘爱民.基于面向对象方法的攻击知识模型[J].计算机研究与发展,2004,41(7):1110-1116. 被引量:7
  • 2陈述彭 鲁学军 等.地理信息系统导论[M].北京:科学出版社0,2000..
  • 3HAN J,KAMBER M. Data Mining:Concepts and Techniques[M].San Francisco:Academic Press,2001.145 - 176.
  • 4MILLER H J ,HAN J. Geographic data mining and knowledge diseovery:An overview[A]. MILLER H J, HAN J. Geographic Data Mining and Knowledge Discovery[C]. London: Taylor and Francis, 2001.3 - 32.
  • 5ESTER M, FROMMELT A, KRIEGEL H P, et al. Spatial data mining: database primitives, algorithms and efficient DBMS support[J ]. Data Mining and Knowledge Disoovery, 2000,4 (2 -3 ):193 - 216.
  • 6GAHEGAN M, WACHOWICZ M, HARROWER M, et al. The integration of geographic visualization with knowledge discovery in databases and geocomputation[J ]. Cartography and Geographic Information Systems, 2001,28 : 29 - 44.
  • 7AGGARWAL C,HAN J,WANG J,et al.A framework for projected clustering of high dimensional data streams [A]. FREYTAG J C, LOCKEMANN P C, ABITEBUL S, et al. Proceedings 2004 VLDB Conference: The 30th International Conference on Very Large Databases (VLDB) [C]. San Francisco: Morgan Kaufmann, 2004. 852 - 863.
  • 8DONG G, HAN J, LAM J M W, et al. Mining muhi - dimensional constrained gradients in data cubes[A]. APERS P M G,ATZENIP, CERI S, et al. VLDB'01 : Proceedings of the 27th International Conference on Very Large Data Bases[ C]. San Francisco: Morgan Kaufmann, 2001.321 - 330.
  • 9SHEKHAR S, LU C, ZI-IANG P. A unified approach to spatial outliers[J]. Geolnformatica, 2003,7(2) : 139 - 166.
  • 10HAINING R,WISE S, MA J. Exploratory spatial data analysis in a geographic information system environment [ J ]. The Statistician, 1998,47 : 457 - 469.

共引文献49

同被引文献40

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部