期刊文献+

统计认知理论及应用研究

Statistical Cognition Theory and Its Applications:An Overview
原文传递
导出
摘要 长期以来大家认为人类认知尽管可以看成是非确定的推理计算过程,但它的知识表达、模型结构、及计算方法和概率统计理论在本质上是不同的,因此认知科学和概率统计方法存在巨大的鸿沟,过去两者基本上独立发展。近年来随着Bayesian概率统计模型研究的一系列突破性工作和认知过程本质的不断被发现和挖掘,两者的相关性和互补性逐渐突显出来。许多研究者认为认知是近似遵循概率统计推理原则的,一些研究工作显示两者的结合有可能对人工智能发展产生深远的影响。本文对当前统计认知理论及应用研究的现状进行系统的梳理,并结合自身的研究对它今后的发展提出自己的看法。 The notion is popularly accepted that even though human cognition can be considered as an uncertain reasoning process, it is still essentially different from probabilistic theory in knowledge presentation, model structures, and computational mechanism, therefore there is a large gap between cognition science and probabilistic statistics, and these two theories are developed independently. Recently, remarkable progress in Bayesian statistical models and rediscovery of cognitive process, make their correlation and cooperation attract more and more attentions. Many researchers think that cognition approximately follows the rational principles of statistical inference, and some research results had shown their combinations would produce an important effect on artificial intelligence research. This paper will give a brief overview of statistical cognition as it stands today, and discuss some future research.
作者 钱沄涛
出处 《心智与计算》 2007年第3期316-327,共12页 Mind and Computation
基金 国家自然科学基金(60103018) 浙江省科技发展计划(2006C21001)资助
关键词 统计 认知科学 结构表征 视觉认知 概率图模型 statistics cognition science structure representation probabilistic graph models cognitive vision
  • 相关文献

参考文献15

  • 1孟遥,李生,赵铁军,杨沐昀.基于统计的句法分析技术综述[J].计算机科学,2003,30(9):54-58. 被引量:7
  • 2刘 洁,陈小平,蔡庆生,范焱.不确定信息的认知结构表示、推理和学习[J].软件学报,2002,13(4):649-651. 被引量:10
  • 3刘志强.因果关系,贝叶斯网络与认知图(英文)[J].自动化学报,2001,27(4):552-556. 被引量:37
  • 4Christophe Andrieu,Nando de Freitas,Arnaud Doucet,Michael I. Jordan.An Introduction to MCMC for Machine Learning[J]. Machine Learning . 2003 (1-2)
  • 5Thomas Hofmann.Unsupervised Learning by Probabilistic Latent Semantic Analysis[J]. Machine Learning . 2001 (1-2)
  • 6Andrieu C,,Freitas N,Doucet A.et al.An introduction to MCMC for machine learning[].Machine Learning.2003
  • 7Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation. Journal of Machine Learning Research . 2003
  • 8Chater N,Oaksford M.The probability heuristics model of syllogistic reasoning[].CognPsychol.1999
  • 9Jordan M I.Learning in graphical models[]..1998
  • 10Karklin Y,Lewicki M S.A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals[].Neural Computation.2005

二级参考文献34

  • 1VapnikN 著 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 2Manning C D, Schutze H. Foundations of statistical natural language prOcessing. The MIT Press, Cambridge, Massachusetts, London, England.
  • 3Black E, Abney S,et al. A procedure for quantitatively comparing the syntactic coverage of English grammars. In: Proc of the DARPA Speech and Natural Language Workshop,1991. 306-311.
  • 4Carroll J,Briscoe E,Sanfilippo A. Parser evaluation: a survey and a new proposal. In : Proc of the 1st Intl Conf on Language Resources and Evaluation, Granada, Spain. 1998. 447-454.
  • 5Shannon C E, Prediction and entropy of printed English. Bell system technical journal, 1951 (30) : 50- 60.
  • 6Marcus M,Santorini B,Marcinkiewicz M. Building a Large Annotated Corpus of English: the Penn Treebank. Computational Linguistics, 1993,19(2) : 313-330.
  • 7Booth T L. Thompson R A. Applying Probability Measures to Abstract Languages. IEEE Transactions on Computers. 1973.C22(5) :442-450.
  • 8Brill E. Automatic Grammar Induction and Parsing Free Text: A Transformation-Based Approach. In: Proc of the 21st Annual Meeting of the Association for Computational Linguistics. 1993. 259-265.
  • 9Bod R. Data-Oriented Parsing (DOP). Proceedings COLING'92, Nantes, France, 1992.
  • 10Johnson M. The DOP estimation method is biased and inconsistent. Computational Linguistics. 2002.28 (1) : 71 - 76.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部