期刊文献+

与边控制相关的两类图 被引量:1

Two Classes of Graphs Related to Edge Domination
下载PDF
导出
摘要 在图G中,如果存在一个边集D,使得不在D中的每一条边都与D中的某条边关联,则称D为G的边控制集.在G的所有边控制集中,包含边数最少的称为最小边控制集,其包含的边数称为边控制数,记为γ′(G).在一个图中,我们研究了加边或去边对该图边控制数的影响.一个图称为边控制临界图(边控制极小图)如果任意增加(去除)一条边都会使边控制数下降.在本文中,我们研究了这两类图的性质,并分别刻画了3-边控制临界图和3-点控制极小图. An edge dominating set in a graph G is a set of edges D such that every edge not in D is adjacent to an edge of D.The edge domination number of G,denoted byγ′(G),is defined as the minimum cardinality of an edge dominating set of G.We consider the effects of edge removal or addition on the edge domination number of a graph.A graph G is edge domination critical graph(edge domination minimal graph,respectively)if the addition(removal,respectively)of any edge decreasesγ′(G).In this paper we investigate various properties of these graphs.Moreover,we characterize 3-edge domination critical graphs and 3-edge domination minimal graphs.
作者 庄蔚 郝国亮 ZHUANG Wei;HAO Guoliang(School of Applied Mathematics,Xiamen University of Technology,Xiamen Fujian 361024,China;College of Science,East China University of Technology,Nanchang Jiangxi 330013,China)
出处 《新疆大学学报(自然科学版)》 CAS 2019年第1期11-16,38,共7页 Journal of Xinjiang University(Natural Science Edition)
基金 福建省自然科学基金(2015J05017)
关键词 边控制集 边控制极小图 边控制临界图 edge dominating set edge domination minimal graph edge domination critical graph
  • 相关文献

参考文献3

二级参考文献13

  • 1MITCHELL S,HEDETNIEMI S T.Edge domination in trees[J].Congr Numer,1977,19:489-509.
  • 2DUTTON R,KLOSTERMEYER W F.Edge dominating sets and vertex covers[J].Discuss Math Grpah Theory,2013,33:437-456.
  • 3ESCOFFIER B,MONNOT J,PASCHOS V T.New results on polynomial inapproximability and fixed parameter approximability of edge dominating set[J].Theor Comput Syst,2015,56:330-346.
  • 4XIAO M,NAGARNOCHI H.A refined exact algorithm for edge dominating set[J].Theor Comput Sci,2014,560:207-216.
  • 5FULMAN J,HANSON D,MACGILLIVRAY G.Vertex domination-critical graphs[J].Networks,1995,25:41-43.
  • 6KNOR M,NIEPEL L,SOLTES L.Centers in line graphs[J].Math Slovaca,1993,43:11-20.
  • 7Haynes T W, Hedetniemi S T, Slater P J. Domination in Graphs: Advanced Topics[M]. New York: Marcel Dekker, Inc, 1998.
  • 8Haynes T W, Hedemiemi S T, Slater P J. Fundamentals of Domination in Graphs[M]. New York: Marcel Dekker, Inc, 1998.
  • 9Haynes T W, Slater P J. Paired-domination in graphs[J]. Networks, 1998, 32: 199-206.
  • 10Alvarado J D, Dantas S, Rautenbach D. Perfectly relating the domination, total domination, and paired domination numbers of a graph[J]. Discrete Math, 2015, 338: 1424-1431.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部