期刊文献+

具有加性噪声的Boussinesq方程的随机吸引子

Random Attroctor for a Type of Boussinesq Equation with Additive White Noise
下载PDF
导出
摘要 研究带有加性噪声项的Boussinesq型方程初边值问题的解的长时间动力学行为,首先通过一系列变换,把具有加性噪声项的随机微分方程转化为不具有噪声项的微分方程,由确定性理论得到该方程决定一个随机动力系统,然后利用周盛凡和范小明的方法[1-2]对一类算子进行估计,证明半群存在有界吸收集,且半群是一致渐近紧的,从而得到该半群存在全局吸引子. The long-time behavior for a type of Boussinesq equation was explored in this paper with additive white noise.Fristly,the stochastic differential equation with additive noise term was transformed into a differential equation without noise by some column transformations.A stochastic dynamical system was obtained from the deterministic theory.Then,we estimated a type of operator which was useful to obtain the existence of absorbing sets and asymptotical compactness for the semigroup on the basis of Zhou and Fan’s method1-2.Thus,we can get this semigroup the exist global attractors.
作者 富娜 杨墨 FU Na;YANG Mo(School of Mathematics,Southwest Jiaotong University,Chengdu,610031,China)
出处 《西北民族大学学报(自然科学版)》 2019年第1期4-12,16,共10页 Journal of Northwest Minzu University(Natural Science)
关键词 BOUSSINESQ方程 吸收集 紧性 随机吸引子 Boussinesq equation Absorbing set Compactness Random attractor
  • 相关文献

参考文献2

二级参考文献19

  • 1郭柏灵,陈风新.弱阻尼非线性Scdrodinger-Boussinesq方程整体吸引子的有限维性质[J].数学研究,1994,27(2):92-93. 被引量:1
  • 2Boussinesq J. Theorie des ondes et des remou qui se propagent le long d'un canal rectangulaire horizontal, en comuniquant au liquide contenu dans ce canal des vitesses sunsiblement pareilles de la surface au fond. J Math Pures Appl, 1872, 17(2): 55-108
  • 3Berryman J. Stability of solitary waves in shallow water. Phys Fluids, 1976, 19:771-777
  • 4Bona J L, Smith R A. A model for the two-way propagation of water waves in a channel. Math Proc Cambridge Philos Soc, 1976, 79:167-182
  • 5Linares F. Global existence of small solutions for a generalized Boussinesq equation. J Differential Equations, 1993, 106:257-293
  • 6Makhankov V G. Dynamics of classical solitons. Phys Rev Lett, 1978, 35(C): 1-128
  • 7Bona J L, Sachs R L. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun Math Phys, 1988, 118:15-19
  • 8Defrutos J, Ortega F, Sanz-Serna J M. Pseudospectral method for the "good" Boussinesq equation. Math Comp, 1991, 57:109-122
  • 9Chen Guowang, Yang Zhijian. Existence and non-existence of global solutions for a class of non-linear wave equation. Math Meth Appl Sci, 2000, 23:615-631
  • 10Pani A K, Sarange H. Finite element Galerkin method for the "good" Boussinesq equation. Nonlinear Anal TMA, 1997, 29:937-956

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部