期刊文献+

两种广义F-压缩映像相关的不动点定理

Two Fixed Point Theorems Concerning Augmented F- Contraction in Complete Metric Spaces
下载PDF
导出
摘要 给出了广义-F-压缩映像和广义-F-Suzuki-压缩映像的概念,提出并证明了两种压缩映像条件下的不动点定理,推广了WARDOWSKI和PIRI的不动点定理。 In this paper,we propose two conceptions of augmented - F - contraction and Augmented - F -Suzuki - contraction. Fixed point theorems for Augmented - F - contraction and Augmented - F - Suzuki -contraction are proved respectively. Those two contraction theorems generalize the contraction theorems of WARDOWSKI and PIRI.
出处 《西南科技大学学报》 CAS 2016年第1期103-106,共4页 Journal of Southwest University of Science and Technology
基金 四川省教育厅重点项目(15ZA0112)
关键词 不动点 压缩映像 F-压缩映像 F-Suzuki-压缩映像 广义F-压缩映像 广义F-F-Suzuki-压缩映像 Fixed piont Contraction F-contraction F-Suzuki-contraction Augmented-F-cont rction Augmented-F-Suzuki-contraction
  • 相关文献

参考文献8

  • 1WARDOWSKI D,DUNG N V.Fixed Points of F-weak contractions on complete metric spaces. Demonstratio Mathematica . 2014
  • 2Hossein Piri,Poom Kumam.??Some fixed point theorems concerning F -contraction in complete metric spaces(J)Fixed Point Theory and Applications . 2014 (1)
  • 3Dariusz Wardowski.??Fixed points of a new type of contractive mappings in complete metric spaces(J)Fixed Point Theory and Applications . 2012 (1)
  • 4Mujahid Abbas,Wutiphol Sintunavarat,Poom Kumam.??Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces(J)Fixed Point Theory and Applications . 2012 (1)
  • 5Mohamed Jleli,Bessem Samet.??A new generalization of the Banach contraction principle(J)Journal of Inequalities and Applications . 2014 (1)
  • 6M. Edelstein.On fixed and periodic points under contractive mappings. Journal of the London Mathematical Society . 1962
  • 7Tomonari Suzuki.A new type of fixed point theorem in metric spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods . 2009
  • 8Nicolae-Adrian Secelean.??Iterated function systems consisting of F -contractions(J)Fixed Point Theory and Applications . 2013 (1)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部