期刊文献+

热传导算法在致病miRNA预测中的应用分析

Application of heat conduction algorithm in predicting disease-related miRNAs
下载PDF
导出
摘要 热传导算法的基本思想源自物理学中的热平衡方程,经过改进后的热传导算法已经在链路预测和推荐领域得到了应用研究.miRNAs是一类内源性微小非编码RNA,研究表明miRNAs参与了多种重要的生物过程并且与多种复杂疾病的发生和发展相关.目前研究表明己经有多种计算预测算法用于预测潜在的miRNA-疾病关联,然而热传导算法在预测miRNA-疾病方面应用研究较少.在miRNA-疾病预测中引入了一种改进的热传导算法,并把它与基本的热传导算法进行了五折交叉验证比较,实验结果验证了在几种评价指标下改进的热传导预测算法的有效性. The basic idea of the heat conduction algorithm is derived from the heat balance equation in physics.The improved heat conduction algorithms have been applied and experimentally verified in the field of link prediction and recommendation.MiRNAs are small endogenous non-coding RNAs that are related to a variety of critical biological processes and complex diseases.Many computational approaches have been applied to predict disease-related mi RNAs.In this paper,a basic heat conduction algorithm and a biased heat conduction algorithm were introduced to predict underlying mi RNA-disease pairs.Five-fold cross validation was implemented among the two heat conduction algorithms.The result demonstrated the biased heat conduction algorithms achieved better performance.
作者 杨杰 罗洪 YANG Jie;LUO Hong(School of Computer Science and Technology,Southwest Minzu University,Chengdu 610041,P.R.C.)
出处 《西南民族大学学报(自然科学版)》 CAS 2019年第5期507-510,共4页 Journal of Southwest Minzu University(Natural Science Edition)
基金 中央高校基本科研业务费青年教师基金项目(2015NZYQN54)
关键词 热传导算法 MIRNA 复杂疾病 heat conduction algorithm miRNA complex disease
  • 相关文献

参考文献3

二级参考文献29

  • 1文益民,史一帆,蔡国永,等.个性化旅游推荐研究综述[EB/OL].北京:中国科技论文在线,2014.[2014-07-03] http://www, paper, edu. cn/releasepaper/content/ 201407-56.
  • 2RESNICK P, VARIAN H R. Recommender systems [ J ]. Communications of the ACM, 1997, 40(3) : 56-58.
  • 3ADOMAVICIUS G, TUZHILIN A. Toward the next genera- tion of recommender systems : a survey of the state-of-the-art and possible extensions [J ]. IEEE transactions on knowledge and data engineering, 2005, 17(6) : 734-749.
  • 4FELFERNIG A, GORDEA S, JANNACH D, et al. A short survey of recommendation technologies in travel and tourism [J]. OEGAI journal, 2007, 25(7) : 17-22.
  • 5LIU Jianguo, ZHOU Tao, GUO Qiang. Information filtering via biased heat conduction [ J ]. Physical review E, 2011, 14(3) : 037101.
  • 6LINDEN G, SMITH B, YORK J. Amazon. com recommen- dations : item-to-item collaborative filtering[ J ]. IEEE inter- aet computing, 2003, 7( 1): 76-80.
  • 7DAS A S, DATAR M, GARG A, et al. Google news per- sonalization: scalable online collaborative filtering [ C ]// Proceedings of the 16th International Conference on World wide Web. New York, USA, 2007: 271-280.
  • 8LIU Qiwen, CHEN Tianjian, CAI Jing, et al. Enlister: baidu's recommender system for the biggest chinese Q & A website[ C]//Proceedings of the Sixth ACM Conference on Recommender Systems. New York, USA, 2012: 285-288.
  • 9HERLOCKER J L, KONSTAN J A, RIEDL J. Explaining collaborative fihering recommendations [ C ]//Proceedings of the 2000 ACM Conference on Computer Supported Coopera- tive Work. New York, USA, 2000: 241-250.
  • 10PAZZANI M J. A framework for collaborative, content- based and demographic filtering [ J ]. Artificial intelligence review, 1999, 13(5-6):393-408.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部