期刊文献+

一类含有预防接种的SVIR最优控制模型 被引量:3

Optimal Control and Stability Analysis of an Epidemic Model with Vaccination
下载PDF
导出
摘要 建立一个含有预防接种的SVIR最优控制模型.首先求出基本再生数.当R0<1时,无病平衡点是局部渐近稳定以及全局渐近稳定的;当R0>1时,地方病平衡点是局部渐近稳定的.其次建立目标函数,利用Pontryagin最大值原理得到最优变量控制组.最后数值模拟的结果验证了最优控制率的有效性. In this paper ,an optimal control model of SVIR based on vaccination is constructed and ana‐lyzed .First ,we show that if the basic reproduction number R0 < 1 ,the disease‐free equilibrium is locally asymptotically stable and globally asymptotically stable ,and that if R0 > 1 ,the disease‐free equilibrium becomes un‐stable ,while the endemic equilibrium is locally asymptotically stable .Next ,we establish the objective function and the optimal control pair with the help of the Pon‐trjagin maximum principle .Final‐ly ,we make a numerical simulation to verify the validity of the optimal control strategy ,and the results indicate that vaccination is of great practical importance after an infectious disease outbreak .
作者 廖书 杨炜明
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期72-78,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金(11271388 11401059) 国家社会科学基金(13CTJ016) 重庆市教委科学技术研究项目(KJ130719 KJ130730 KJ120704)
关键词 传染病 疫苗接种 稳定性 最优控制 Pontryagin原理 infectious disease vaccination stability optimal control Pontryagin principle
  • 相关文献

参考文献14

  • 1Asano Erika,Gross Louis J,Lenhart Suzanne,Real Leslie A.Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical biosciences and engineering : MBE . 2008
  • 2DIETZ K,SCHENZLE D.Mathematical Models for Infectious Disease Statistics. . 1985
  • 3Ahmet Yildirim,Yves Cherruault.Analytical approximate solution of a SIR epidemic model with constant vaccination strategy by homotopy perturbation method[J]. Kybernetes . 2009 (9)
  • 4LUKES D L.Differential Equations:Classical to Controller. . 1982
  • 5Eunok Jung,Shingo Iwami,Yasuhiro Takeuchi,Tae-Chang Jo.Optimal control strategy for prevention of avian influenza pandemic[J]. Journal of Theoretical Biology . 2009 (2)
  • 6Holly Gaff,Elsa Schaefer.Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math. Biosci. Eng . 2009
  • 7K. Hattaf,M. Rachik,S. Saadi,Y. Tabit,N. Yousfi.Optimal control of tuberculosis with exogenous reinfection. Appl. Math. Sci., Ruse . 2009
  • 8P. van den Driessche,James Watmough.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences . 2002 (1)
  • 9Zuzanna Szyma\’nska.Analysis of immunotherapy models in the context of cancer dynamics. Int. J. Appl. Math. Comput. Sci . 2003
  • 10E. Jung,S. Lenhart,Z. Feng.Optimal control of treatments in a two-strain tuberculosis model. Discrete Contin. Dyn. Syst. Ser. B . 2002

二级参考文献10

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2CHUN T W, CARRUTH L, FINZI D, et al. Quantification of Latent Tissue Reservoirs and Total Body Viral Load in HIV-1 Infection [J]. Nat Rev Microbiol, 1997, 387(6629): 183-188.
  • 3LAMBOTTE O, CHAIX M L, GUBLER B, et al. The Lymphocyte HIV Reservoir in Patients on Long-Term HAART Is A Memory of Virus Evolution [J]. AIDS, 2004, 18(8): 1147-1158.
  • 4CHUN T W, ENGEL D, MIZELL S B, et al. Induction of HIV-1 Replication in Latently Infected CD4+ T Cells Using a Combination of Cytokines [J]. J Exp Med, 1998, 188(1): 83-91.
  • 5PERELSON A S, NELSON P W. Mathematical Analysis of HIV-1 Dynamics in Vivo [J]. SIAM Rev, 1999, 41(1): 3-44.
  • 6NOWAK M A, MAY R M. Virus Dynamics: Mathematical Principles of Immunology and Virology IMp. Oxford: Ox ford University Press, 2000: 52-98.
  • 7YAN Yin-cui, WANG Wen-di. Global Stability of a Five-dimensional Model with Immune Responses and Delay [J]. DISCRETE CONT DYN-B, 2012, 17(1): 401-416.
  • 8WANG Xiu-nan, WANG Wen di. An HIV Infection Model Based on a Vectored Immunoprophylaxis Experiment [J]. J Theor Blot, 2012, 313: 127-135.
  • 9王志平,刘贤宁.考虑抗体免疫反应及免疫损害的慢性病毒感染模型及其动力学性态(英文)[J].西南大学学报(自然科学版),2007,29(12):1-5. 被引量:6
  • 10闫银翠,王稳地.考虑CTL免疫作用的HIV感染模型的全局动力学性态[J].西南大学学报(自然科学版),2011,33(5):22-27. 被引量:9

共引文献7

同被引文献2

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部