摘要
首先推导了两个基于磁控忆阻器模型的串联忆阻器的特性及磁通电荷关系,然后通过使用这个忆阻系统获得一个新颖的四维超混沌系统,它有两个正的李雅普诺夫指数.通过观察各种混沌吸引子、功率谱和分岔图可看到丰富的动力学现象.最后,建立了模拟该系统的SPICE电路.SPICE仿真结果与数值分析一致,这进一步显示了该超混沌系统的混沌产生能力.
The nanometer memristor is considered as the fourth basic circuit element .Not only is it a com‐petitive candidate for next‐generation nonvolatile memory ,it also has the potential of generating complex dynamics in a nonlinear circuit ,duo to its superior properties over other elements .The implementation of a new memristor‐based chaos generator has become a rising paradigm in nonlinear circuit design .This pa‐per firstly derives the characteristics of two memristors in series based on the theoretical flux‐controlled memristor model and the constructive flux‐charge relation .Then ,by using this memristive system ,a no‐vel four‐dimensional hyperchaotic system is obtained ,which has two positive Lyapunov exponents .Rich dynamical phenomena are detected by observation of various chaotic attractors ,power spectra and bifurca‐tion diagrams .Finally ,an analog SPICE implementation of this system is presented .The SPICE simula‐tion results are in line with the numerical analysis ,which further shows the ability of this hyperchaotic system to produce chaos .
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第1期163-172,共10页
Journal of Southwest University(Natural Science Edition)
基金
新世纪优秀人才支持计划(教技函[2013]47号)
国家自然科学基金(61372139
61101233
60972155)
教育部"春晖计划"科研项目(z2011148)
留学人员科技活动项目择优资助经费(国家级
优秀类
渝人社办〔2012〕186号)
重庆市高等学校优秀人才支持计划(渝教人〔2011〕65号)
重庆市高等学校青年骨干教师资助计划(渝教人〔2011〕65号)
中央高校基本科研业务费专项资金(XDJK2014A009
XDJK2013B011)
关键词
忆阻器
超混沌系统
混沌吸引子
电路实现
memristor
hyperchaotic system
chaotic attractor
circuit implementation