期刊文献+

分数阶T型L_αC_β电路仿真研究 被引量:7

Numerical Simulation of a T-Shaped Fractional L_αC_β Circuit
下载PDF
导出
摘要 为了研究分数阶元器件的引入对电路基本特性的影响,选择典型的T型LC电路为研究对象,将其拓展到分数阶领域.通过计算机数值模拟方法,系统地研究了电路参数L,C,特别是新参数分数阶阶次α和β对分数阶T型LαCβ电路的基本特性——阻抗和相位的影响规律.进一步地引入了灵敏度分析的概念,分析了分数阶阶次α和β对阻抗和相位极值的影响.丰富的数值模拟结果不仅形象地展示了分数阶T型LαCβ电路的阻抗和相位随各参数的变化规律,还充分证明了分数阶阶次α和β的引入,极大地增强了电路设计的灵活性和选择性. In order to study the effect of fractional order components on the characteristics of the basic cir‐cuit ,we focus on a typical T‐shaped fractional LαCβcircuit .With computer numerical simulation we make a systematic study of the influences of circuit parameters L and C ,especially of the new parameter frac‐tional orders αandβ,on impedance and phase ,w hich are basic properties of the T‐shaped fractional LαCβcircuit .Moreover ,we introduce the concept of “sensitivity analysis” to study the influence of the parame‐ter fractional ordersαandβon the maximum and minimum of the impedance and phase .The results of lots of numerical simulations are presented to illustrate how the impedance and phase of the T‐shaped LαCβcir‐cuit change with the changes of various parameters and prove that the introduction of fractional orders αand βgreatly increases the elasticity and selectivity in circuit design .
作者 余战波
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期141-147,共7页 Journal of Southwest University(Natural Science Edition)
基金 重庆市高等教育教学改革研究项目(143158)
关键词 分数阶电路 LC电路 数值模拟 fractional-order circuit LC circuit numerical simulation
  • 相关文献

参考文献5

  • 1Chen D Y,Wu C,Lu H H C, et al.Circuit simulation for synchronization of a fractional-order and integer-order chaotic system. Nonlinear Dynamics . 2013
  • 2Zhou G,Xu J,Wang J.Constant-frequency peakripple-based control of buck converter in CCM:review,unification and duality. IEEE Transactions on Industrial Electronics . 2014
  • 3A. G. Radwan,K. N. Salama.Passive and Active Elements Using Fractional L beta C alpha Circuit. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS . 2011
  • 4WANG Fa-qiang,MA Xi-kui.Modeling and Analysis of the Fractional Order Buck Converter in DCM Operation by Using Fractional Calculus and the Circtui-Averaging Technique. Journal of Power Electronics . 2013
  • 5ZHOU Ping,HUANG Kun.A New 4-D Non-Equilibrium Fractional-Order Chaotic System and Its Circuit Implementation. Communications in Nonlinear Science and Numerical Simulation . 2014

同被引文献34

  • 1卢俊国.Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization[J].Chinese Physics B,2006,15(2):301-305. 被引量:43
  • 2王发强,刘崇新.分数阶临界混沌系统及电路实验的研究[J].物理学报,2006,55(8):3922-3927. 被引量:55
  • 3LI C P, DENG W H, XU D. Chaos Synchronization of the Chua System with a Fractional Order [J]. Physica A, 2006, 360(1): 171--185.
  • 4FRIDMAN E, FRIDMA L, SHUSTIIN E. Steady Modes in the Relay Control Systems with Time Delay And Periodic Disturbances[J].Journal o{ Dynamic Systems, Measurement, and Control, 2000, 122(4) : 732--737.
  • 5DAVIS L C. Modification of the Optimal Velocity Traffic Model to Include Delay due to Driver Reaction Time [J]. Phys- ica A, 2003, 319(7): 557--567.
  • 6CELIK V, DEMIR Y. Chaotic Dynamics of the Fractional Order Nonlinear System with Time Delay [J]. Signal, Image and Video Processing, 2014, 8(1): 65--70.
  • 7HALEKAR S, DAFTARDAR-GEJJI V. A Predictor-Corrector Scheme for Solving Nonlinear Delay Differential Equa- tions of Fractional Order [J]. Journal of Fractional Calculus and Applications, 2011, 1(5): 1--8.
  • 8LI X F, CHU Y D, ZHANG J G, et al. Nonlinear Dynamics and Circuit Implementation for a New Autonomous Chaotic System [J]. Chaos Solitions ~ Fractals, 2009, 41(5): 2360--2370.
  • 9TAVAZOEI M S, HAERI M. Limitations of Frequency Domain Approximation for Detecting Chaos in Fractional Order Systems [J]. Nonlinear Analysis Theory, 2008, 69(4): 1299--1320.
  • 10张艳珠,薛定宇.一类时间分数阶传输线模型及仿真分析[J].东北大学学报(自然科学版),2008,29(2):170-173. 被引量:2

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部