期刊文献+

一类Schrdinger-Poisson方程正解的存在性 被引量:1

On the Existence of the Positive Solution of a Class of Schrdinger-Poisson Equation
下载PDF
导出
摘要 研究了一类带负非局部项的Schrdinger-Poisson方程的正解的存在性.在临界增长条件下,得出这类方程至少存在一个正解. We study the existence of the positive solution of a class of Schr?dinger‐Poisson equation with the negative non‐local term ,and come to the conclusion that such a Schr?dinger‐Poisson equation with critical grow th has at least one positive solution via variational methods .
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期23-26,共4页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金(11471267) 贵州省教育厅自然科学基金(2010086) 贵州省科学技术科学基金(LKZS[2014]22)
关键词 Schrodinger-Poisson方程 山路定理 临界增长 Schrdinger-Poisson equation mountain pass theorem critical growth
  • 相关文献

参考文献12

  • 1Leiga Zhao,Fukun Zhao.On the existence of solutions for the Schr?dinger–Poisson equations[J]. Journal of Mathematical Analysis and Applications . 2008 (1)
  • 2A. Azzollini,A. Pomponio.Ground state solutions for the nonlinear Schr?dinger–Maxwell equations[J]. Journal of Mathematical Analysis and Applications . 2008 (1)
  • 3VAIRA G.Existence of Bounded States for Schrdinger-Poisson Type Systems. S I S S A . 2012
  • 4Ambrosetti A,Rabinowitz PH.Dual variational methods in critical point theory and applications. Journal of Functional Analysis . 1973
  • 5Lions PL.The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Annales de l’Institut Henri Poincare - Analyse non lineaire . 1984
  • 6Paul H. Rabinowitz.On a class of nonlinear Schr\"odinger equations. Zeitschrift für Angewandte Mathematik und Mechanik . 1992
  • 7Antonio Ambrosetti,David Ruiz.Multiple bound states for the Schr\"odinger-Poisson problem. Commun. Contemp. Math . 2008
  • 8David Ruiz.The Schr?dinger–Poisson equation under the effect of a nonlinear local term[J]. Journal of Functional Analysis . 2006 (2)
  • 9Giusi Vaira.Ground states for Schr\"odinger-Poisson type systems. Ric. Mat . 2011
  • 10陈尚杰,李麟.一类R^3上非齐次Klein-Gordon-Maxwell方程解的存在性[J].西南师范大学学报(自然科学版),2013,38(4):35-39. 被引量:3

二级参考文献20

  • 1BENCI V, FORTUNATO D. Solitary Waves of the Nonlinear Klein-Gordon Equation Coupled with the Maxwell Equa tions [J]. Rev Math Phys, 2002, 14(4) : 409-420.
  • 2BENCI V, FORTUNATO D. The Nonlinear Klein-Gordon Equation Coupled with the Maxwell Equations [J]. Nonlin- ear Anal, 2001, 47(9): 6065-6072.
  • 3DAPRILE T, MUGNAI D. Solitary Waves for Nonlinear Klein-Gordon-Maxwelland Schr6dinger-Maxwell Equations [J]. ProcRoySoeEdinburgh: Sect A, 2004, 134(5): 893-906.
  • 4AZZOLLINI A, POMPONIO A. Ground State Solutions for the Nonlinear Klein-Gordon-Maxwell Equations [J]. Topol Methods Nonlinear Anal, 2010, 35: 33-42.
  • 5DAPRILE T, MUGNAI D. Non-Existence Results for the Coupled Klein-Gordon Maxwell Equations [J]. Adv Nonlin- ear Stud, 2004, 4(3): 307-322.
  • 6CASSANI D. Existence and Non-Existence of Solitary Waves for the Critical Klein-Gordon Equation Coupled with Maxwell's Equations [J]. Nonlinear Anal, 2004, 58(7-8) : 733-747.
  • 7CUNHA P L. Subcitical and Supercritical Klein-Gordon-Maxwell Equations without Ambrosetti-Rabinowitz Condition [EB/OL]. [2012-08-20]. http: //arxiv. org/abs/1206. 0495.
  • 8ZOU Wen-ruing, SCHECHTER M. Critical Point Theory and its Applications [M]. New York: Springer, 2006.
  • 9D'APRILE T, MUGNAI D. Solitary Waves for Nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell Equation [J]. Proc Roy Soc Edinburgh: Sect A, 2004, 134: 893--906.
  • 10CLAUDIANOR O A. Schrodinger-Poisson Equations without Ambrosetti-Rabinowitz Condition [J]. J Math Anal Appl, 2011, 377: 584--592.

共引文献11

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部