期刊文献+

拟常曲率流形中具有常平均曲率的子流形 被引量:4

On the Submanifolds with a Constant Mean Curvature in a Manifold of Quasi-Constant Curvature
下载PDF
导出
摘要 讨论了局部对称拟常曲率黎曼流形中具有常平均曲率向量的紧致无边子流形,给出了关于其第二基本形式模长平方S的积分不等式. In this paper ,we obtain integral inequalities for the length square of the second fundamental form of M ,where M is a compact submanifold without boundary with constant mean curvature in Rieman‐nian manifold N of the quasi‐constant curvature .
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期30-34,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金(11471188)
关键词 拟常曲率黎曼流形 常平均曲率 积分不等式 quasi-constant curvature Riemannian manifold constant mean curvature integral inequality
  • 相关文献

参考文献4

  • 1Li An-Min,Li Jimin.An intrinsic rigidity theorem for minimal submanifolds in a sphere[J]. Archiv der Mathematik . 1992 (6)
  • 2Masafumi Okumura.Submanifolds and a pinching problem on the second fundamental tensors[J]. Transactions of the American Mathematical Society . 1973
  • 3Yau ST.Submanifolds with constant mean curvature I. American Bee Journal . 1974
  • 4Chern SS,Do Carmo M,Kobayashi S,et al.Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields,Proceedings of a Conference in Honor of Professor Marshall Stone . 1970

共引文献1

同被引文献18

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部