期刊文献+

一类恒化器时滞模型的性态分析 被引量:1

Performance Analysis of a Delayed Chemostat Model
下载PDF
导出
摘要 研究了一类带时滞的恒化器模型,将经典恒化器模型中的微生物营养吸收的功能反应函数一般化.首先利用微分方程的基本理论证明了模型的解的正性和有界性,其次给出了系统的基本再生数以及平衡点存在的条件,再利用特征根方法确定了平衡点的局部渐近稳定性的条件,最后通过构造Lyapunov函数得出了细菌灭绝平衡点和无感染平衡点处的全局渐近稳定性. In this paper ,we study a delayed chemostat model in which the functional response function of microbial nutrient uptake in the classical chemostat model is generalized .Firstly ,we prove that the solu-tions of the model are positive and bounded by using the basic theories of differential equations .Secondly , we calculate the basic reproduction number of the system and analyze the existence conditions of equilibri-um points .Moreover ,we use the theory of characteristic roots to study the conditions for the local asymp-totic stability of equilibrium points .Finally ,we study the global asymptotic stability of bacterial extinction equilibrium and infection-free equilibrium by constructing Lyapunov functions .
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期89-96,共8页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11271303)
关键词 恒化器模型 时滞 稳定性 分支 chemostat model delay stability bifurcation
  • 相关文献

参考文献4

  • 1Stavros Busenberg,Kenneth L. Cooke.The effect of integral conditions in certain equations modelling epidemics and population growth[J]. Journal of Mathematical Biology . 1980 (1)
  • 2Hale JK,Verduyn Lunel SM.Introduction to Functional Differential Equations. Journal of Applied Mathematics . 1993
  • 3Levin, B.R.,F.M Stewart,,L. Chao.Resource-Limited Growth, Competition, and Predation: A Model and Experimental Studies with Bacteria and Bacteriophage. The American Naturalist . 1977
  • 4Edoardo Beretta,Yang Kuang.Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM Journal on Mathematical Analysis . 2002

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部