期刊文献+

一种新的多分类器融合方法 被引量:1

On a New Multiple Classifiers Ensemble Method
下载PDF
导出
摘要 提出了一种新的基于多分类器联合的模式识别方法,该方法引入图像处理领域的对比度概念,对多分类器系统中不同基本分类器的融合权重动态赋值,并通过融合权重联合所有基本分类器决策信息,同时构建一个临时的全局分类器来做出模式识别任务的融合决策输出.试验表明该方法在模式识别性能上能够获得较好的性能. This paper proposes a new pattern recognition method based on multiple classifiers ensemble. The new method calculates weights of each base classifier in multiple classifier system with the contrast of base classifier’s decision outputs.Then,a global classifier can be built by fusing all base classifiers’deci-sion outputs.And it is used to make final decision.Experiment results show this new method can get higher accuracy than single classifier.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期126-130,共5页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 分类器联合 模式识别 动态权重 classifier ensemble pattern recognition dynamic weight
  • 相关文献

参考文献3

  • 1Shiliang Sun.Local within-class accuracies for weighting individual outputs in multiple classifier systems[J].Pattern Recognition Letters.2009(2)
  • 2Michele Ceccarelli,Alfredo Petrosino.Multi-feature adaptive classifiers for SAR image segmentation[J].Neurocomputing.1997(4)
  • 3Rozita A. Dara,Mohamed S. Kamel,Nayer Wanas.Data dependency in multiple classifier systems[J].Pattern Recognition.2008(7)

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部