期刊文献+

基于向量图分析的自适应滤波快速算法 被引量:1

Fast algorithms of adaptive filtering based on vector plots analysis
下载PDF
导出
摘要 对自适应滤波算法进行了讨论,提出了基于向量图分析的快速算法.该方法与目前所有自适应滤波算法不同,将数学中的几何分析方法引入到自适应滤波的研究中,通过探讨最小均方(LMS)算法的向量图结构及其算法收敛的几何特征,在基于几何分析的基础上,寻找有效的快速算法.仿真结果表明了所获算法的有效性及优越性,从而为自适应滤波算法的研究开辟了另一条新的途径. Adaptive filtering algorithms were discussed and a fast algorithm was proposed based on vector plots analysis, which was different from the present adaptive filtering algorithms. It applied the approaches of mathematical geometrical analysis into the study of adaptive filtering and tried to seek an effective and fast algorithm on the basis of geometrical analysis, through inquiring into vector plots structure of least mean squares (LMS) algorithm and geometrical feature of algorithm convergence. Numerical simulations indicate the efficiency and superiority of this new algorithm. Thus, a new approach is in prospect for the research of adaptive filtering algorithms.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第6期838-842,共5页 Control Theory & Applications
基金 国家自然科学基金项目(60172069).
关键词 自适应滤波算法 向量图分析 快速算法 自适应滤波器 adaptive filtering vector plots structure geometric analysis fast algorithm
  • 相关文献

参考文献4

二级参考文献7

共引文献552

同被引文献19

  • 1曾庆宁,欧阳缮,廖桂生.基于阵列抗串扰自适应噪声抵消的语音增强[J].电子学报,2005,33(2):241-244. 被引量:8
  • 2王振力,张雄伟,杨吉斌,陈功.一种新的快速自适应滤波算法的研究[J].通信学报,2005,26(11):1-6. 被引量:12
  • 3JUANG C F,LIN C T.Noisy speechprocessingby recurrently adaptive fuzzy filters[J].IEEE Transactions on Fuzzy Systems,2001,9(1):139-152.
  • 4LI Z R,ER M J.Adaptive noise cancellation using IIR-based fuzzy systems[C] //Proceedings of the IEEE International Conference on Systems,Man and Cybernetics.Netherlands:IEEE,2004:5691-5696.
  • 5DU C J,YIN H E,WU S C,et al.Visual evoked potentials estimation by adaptive noise cancellation with neural-network-based fuzzy inference system[C] //Proceedings of the 26th Annual International Conference of the IEEE EMBS.San Francisco,CA,USA:IEEE,2004:624-627.
  • 6MENG JOO ER,ZHENGRONG LI,HUANGING CAI,et al.Adaptive noise cancellation using enhanced dynamic fuzzy neural networks[J].IEEE Transactions on Fuzzy Systems,2005,13(3):331-341.
  • 7ELNASHAR AYMAN,ELNOUBI SAID,EL-MIKAll HAMDI.Perfommnce analysis of blind adaptive MOE multiuser receivers using inverse QRD-RLS algorithm[J].IEEE Transactions on Circuits and Systems,2008,55(1):398-411.
  • 8KENNEDY J,EBERHART R.Particle swarm optimization[C] //Proceedings of the IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE,1995:1942-1948.
  • 9SHI Y H,EBERHART R C.Parameter selection in particle swarm optimization[C] //Proceedings of the 7th Annual Conference on Evolutionary Programming.New York:Springer-Verlag.1998:591-600.
  • 10LIANG J J,QIN A K,Ponnuthurai Nagaramam Suganthan,et al.Comprehensive learning particle swam optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部