期刊文献+

用采样数据反馈控制统一混沌系统到平衡点 被引量:6

Control unified chaotic system to equilibrium points using sampled data feedback
下载PDF
导出
摘要 针对最新提出的统一混沌系统,给出了一种单参数采样数据反馈控制器.对α取不同值时的统一系统,以给定的频率采样输出作为控制信号,构造离散时间控制算法,以达到将统一混沌系统控制到平衡点的目的.通过大量数值试验,找出了不同α值的统一系统一致渐近稳定地控制到平衡点的控制参数取值范围,并且检验了该方法的鲁棒性. Control for the unified chaotic system using sampled-data feedback control was proposed. For various values of the parameter α, the sampled output of the unified chaotic system at a given sampling rate was applied as the controlling signals. Then the sampled data were used to construct a discrete-time feedback control algorithm so that the unified system could be controlled to reach its equilibrium points. Through plenty of numerical experiments, for various values of the controlling parameter α, the ranges of α was gotten, for which the corresponding systems could be controlled to reach its equilibrium points with uniform asymptotic stability. Finally the robustness of this method was verified.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第6期889-893,共5页 Control Theory & Applications
基金 国家自然科学基金项目(50209012).
关键词 统一混沌系统 平衡点 鲁棒性 采样数据反馈控制 混沌控制 sampled-data feedback unified chaotic system control equilibrium robustness
  • 相关文献

参考文献11

  • 1[1]ALEKSEEV V V, LOSKUTOV A Y. Control of a system with a strange attractor through periodic parametric action [ J ]. Soviet Physics Doklady, 1987,32(4 ): 1346 - 1348.
  • 2[2]HUBLER A W. Adaptive control of chaotic system [ J ]. Helvetica Physica Acta, 1989, 62:343.
  • 3[3]OTTE, GREBOGIC, YORKEJ A. Controlling chaos [J]. Physical Review Letters, 1990, 64(11):1196.
  • 4[4]CHENG, DONGX. Fromchaostoorder[M]. Singapore: World Scientific, 1998.
  • 5[8]Lu Jinhu, CHENG uanrong, CHENG Daizhan, et al. Bridge the gap between the Lorenz system and the Chen system [J]. Int J Bifurcation Chaos, 2002, 12(12) :2917 - 2926.
  • 6[9]CHENG, UETAT. Yet another chaotic attractor [J]. Int J Bifurcation Chaos, 1999,9(7):1465- 1466.
  • 7[10]VANECEK, CELIKOVSK Y. Control Systems: From Linear Analysis to Synthesis of Chaos [M]. London: Pretice-Hall, 1996.
  • 8陆君安,吕金虎,等.Parameter Identification and Tracking of a Unified System[J].Chinese Physics Letters,2002,19(5):632-635. 被引量:17
  • 9[13]LU Jun'an, WU Xianqun, LU Jinhu. Synchronization of a unified chaotic system and the application in secure communication [ J ].Physics Letters A, 2002, 305:365- 370.
  • 10[14]LU Jinhu, LU Jun'an. Controlling uncertain Lü system using linear feedback [ J]. Chaos, Solitons & Fractals, 2003, 17 ( 1 ): 127 -133

二级参考文献10

  • 1Chen G and Dong X 1998 From Chaos to Order: Methodologiess Perspectives and Applications (Singapore: World Scientific)
  • 2Lu J H, Lu J A and Chen S H 2002 Chaotic Time Series Analysis and Its Application (Wuhan: Wuhan University Press) (in Chinese)
  • 3Chen G and Ueta T 1999 Int. J. Bifurcation Chaos 9 1465
  • 4Lorenz E N 1963 J.Atmos.Sci 20 130
  • 5Vanecek A and Celikovsky S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos (London: Prentice-Hall)
  • 6Lu J H and Chen G R 2002 Int J. Bifurcation Chaos 12 659
  • 7Lu J H, Chen G R, Zhang S C and Celikovsky S 2002 Int.J. Bifurcation Chaos 12(12) at press
  • 8Lu J H and Zhang S C 2001 Phys. Lett. A 286 148
  • 9Zheng Z G, Hu G and Hu B B 2001 Chin. Phys. Lett. 18 874
  • 10Wu S G, Sang H B and He K F 2001 Chin. Phys. Lett.18 341

共引文献16

同被引文献64

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部