期刊文献+

基于OpenCL的图形处理器FDTD算法仿真研究 被引量:2

FDTD Simulation Using Graphic Processing Units Based on OpenCL
下载PDF
导出
摘要 大型电磁仿真计算的时域有限差分(FDTD)仿真计算通常是十分耗时的,通用图形处理器(GPGPU)技术为其提供了一种合适的解决方案。通过分析FDTD算法特征以及Courant稳定性及数值色散稳定条件,阐述其在并行计算方面的优势。OpenCL是一种新的开放的行业标准,可以用来开发在CPUs,GPUs及其它各种平台上通用的程序。通过阐述OpenCL硬件基础,执行环境,实现方法来增进对其概念的掌握。为充分发挥异构处理平台下GPU的计算能力,提出了基于开放运算语言(OpenCL)模型,并且利用图形处理器并行FDTD仿真的实现方法。并与传统CPU计算相比较,验证计算结果的精确性。通过分析不同网格数量的速度提升情况,结果表明基于OpenCL的GPU计算速度与单CPU相比可以提升几十倍。 It usually takes a lot of time to simulate Large-scale electromagnetic with Finite Difference Time Domain(FDTD) method, but now General Purpose Graphics Processing Units(GPGPU) has provided a viable solution to solve this problem. It can be found that FDTD is an inherently data parallel algorithm by analyzing its algorithm characteristics and its courant stability condition and its numerically stable condition. OpenCL is a new open industry standard that can be used to program CPUs, GPUs, and other devices from different vendors. By introducing OpenCL hardware basis, execution environment, realization method, it could make us understand its conception easier. In order to fully exploit the capability of GPU for general—purpose computing under heterogeneous processing platforms, Parallel method for FDTD algorithm was put forward by using GPU based-on Open Computing Language(OpenCL) model. Comparing with the calculation with traditional CPU, its accuracy was verified. By analyzing calculation speed in different sizes of Yee cells, the acceleration based on OpenCL could be come up to tens of times compare to single CPU.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第8期1639-1643,1651,共6页 Journal of System Simulation
基金 国家自然科学基金(61077043) 国家重点基础研究发展计划(2009CB930503)
关键词 图形处理器 开放运算语言 时域有限差分方法 加速比 graphics processing units open computing language finite difference time domain acceleration ratio
  • 相关文献

参考文献2

二级参考文献24

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2孙家旭 张林波.网络并行计算与分布式编程环境[M].北京:科学出版社,1996..
  • 3()wens J D, Houston M, Luebke D, et al. GPU computing [J]. Proceedings of the IEEE, 2008, 96(5): 879-899.
  • 4Owens J D, Luebke D, Govindaraju N, et al. A survey of general-purpose computation on graphics hardware [J]. Computer Graphics Forum, 2007, 26(1): 80-113.
  • 5Fatahalian K, Houston M. GPUs:a closer look [J]. ACM Queue, 2008, 6(2): 18 28.
  • 6Jang B, Mistry P, Sehaa D, et al. Data transformations enabling loop vectorization on multithreaded data parallel architectures [C] //Proceedings of the 15th ACM SIGPLAN Symposium on Principles ahd Practice of Parallel Programming. New York: ACM Press, 2010:353-354.
  • 7Liu Y X, Zhang E Z, Shen X P. A cross-input adaptive framework for GPU program optimizations [C] //Proceedings of IEEE International Symposium on Parallel & Distributed Processing. Los Alamitos: IEEE Computer Society Press, 2009, 1-10.
  • 8Ryoo S, Rodrigucs C I, Stone S S, et al. Program optimization space pruning for a multithreaded GPU [C]// Proceedings of the 6th Annual IEEE/ACM International Symposium on Code Generation and Optimization. New York: ACM Press, 2008:195-204.
  • 9Ryoo S, Rodrigues C l, Stone S S, el al. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA [C] //Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York: ACM Press, 2008:73-82.
  • 10Jang 13, Do S, Pien H, etal. Architecture aware optimization targeting multithreaded stream computing[C] //Proceedings of the 2nd Workshop on General Purpose Processing onGraphics Processing Units, New York: ACM Press, 2009: 62-70.

共引文献43

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部