期刊文献+

基于边界的分层马尔科夫模型的医学图像分割 被引量:2

Medical Image Segmentation Using Hierarchical Markov Model Based on Boundary
下载PDF
导出
摘要 基于MRF的分割算法常存在边界块效应,且对整幅图像进行建模运行效率低。针对这些问题,提出了基于边界的多尺度域分层马尔科夫模型的图像分割算法,把边界作为可观测序列,使影像的特征场建立在一系列小波域提取的边界上,并建立基于边界的标号场MRF模型,将尺度间的交互集成在影像模型中,借助贝叶斯框架实现分割。通过测试图像和医学图像对算法进行检验,并与WMSRF算法进行比较,结果表明,算法在有效区分不同区域的同时很好的保留了边界信息,且提高了运行效率。 The segmentation algorithms based on MRF often exist boundary block effect, and have low operation efficiency by modeling the whole image. To solve the problems the image segmentation algorithm using multiscale domain hierarchical Markov model based on boundary was studied. It viewed an boundary as an observable series, the image characteristic field was built on a series of boundary extracted by wavelet transform, and the label field MRF model based on the boundary was established to integrate the scale interaction in the model, then the image segmentation was obtained by Bayesian framework. The test images and medical images were utilized to test the proposed algorithm. The results show that it can not only distinguish effectively different regions, but also retain the boundary information very well, and improve the efficiency.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第8期1747-1751,1757,共6页 Journal of System Simulation
基金 国家自然科学基金项目(61170161 61202111 61100115) 山东省自然科学基金项目(ZR2011G0001 ZR2012FQ029 ZR2012FM008) 山东省高校科技计划项目(J12LN05) 山东省科技发展计划(2013GNC11012) 鲁东大学校基金项目(LY2010014)
关键词 医学图像分割 多尺度域 MRF 边界 medical image segmentation multiscale MRF boundary
  • 引文网络
  • 相关文献

参考文献6

  • 1Bing Nan Li,Chee Kong Chui,Stephen Chang,S.H. Ong.Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation[J].Computers in Biology and Medicine.2010(1)
  • 2秦绪佳,杜轶诚,张素琼,王卫红,韩军.基于边缘信息C_V模型的医学图像分割方法[J].小型微型计算机系统,2011,32(5):972-977. 被引量:7
  • 3Ze-Xuan Ji,Quan-Sen Sun,De-Shen Xia.A framework with modified fast FCM for brain MR images segmentation[J].Pattern Recognition.2010(5)
  • 4孙日明.用于医学图像分割的区域生长方法[J].大连交通大学学报,2010,31(2):91-94. 被引量:7
  • 5ZHANG XiaoFeng,ZHANG CaiMing,TANG WenJing,WEI ZhenWen.Medical image segmentation using improved FCM[J].Science China(Information Sciences),2012,55(5):1052-1061. 被引量:20
  • 6Lei He,Zhigang Peng,Bryan Everding,Xun Wang,Chia Y. Han,Kenneth L. Weiss,William G. Wee.A comparative study of deformable contour methods on medical image segmentation[J].Image and Vision Computing.2007(2)

二级参考文献18

  • 1姜慧研,司岳鹏,雒兴刚.基于改进的大津方法与区域生长的医学图像分割[J].东北大学学报(自然科学版),2006,27(4):398-401. 被引量:16
  • 2周学成,罗锡文.采用区域生长法分割根系CT图像的改进算法[J].农业机械学报,2006,37(12):122-125. 被引量:14
  • 3BHANU B,SUNGKEE LEE,MING J.Adaptive image segmentation using a genetic algorithm[J].IEEE Transactions on Systems,Man and Cybernetics,1995,25(12):1543-1567.
  • 4AMLAN KUNDU.Robust edge detection[J].Pattern Recognition,1990,23(5):423-440.
  • 5ARBIND K GUPTA,SANTANU CHAUDHURY,GUTURU PARTHASARATHY.A new approach for aggregating edge points into line segments[J].Pattern Recognition,1993,26(7):1069-1086.
  • 6ANDREW MEHNERT,PAUL JACKWAY.An improved seeded region growing algorithm[J].Pattern Recognition Letters,1997,18(10):1065-1071.
  • 7RAJASVARAN LOGESWARAN,CHIKKANNAN ESWARAN.Stone detection in MRCP images using controlled region growing[J].Computers in Biology and Medicine,2007,37(8):1084-1091.
  • 8MANOUSAKAS I N,UNDRILL P E,CAMERON G G,et al.Split-and-Merge Segmentation of Magnetic Resonance Medical Images:Performance Evaluation and Extension to Three Dimensions[J].Computers and Biomedical Research,1998,31(6):393-412.
  • 9GAMBOTTO JEANPIERRE.A new approach to combining region growing and edge detection[J].Pattern Recognition Letters,1993,14(11):869-875.
  • 10YANG MINGDER,SU TUNGCHING.Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis[M].Expert Systems with Applications,In Press:2000.

共引文献31

同被引文献16

引证文献2

二级引证文献7

;
使用帮助 返回顶部