期刊文献+

基于Huber的改进鲁棒滤波算法 被引量:6

Huber-based Modified Robust Filter Algorithm
下载PDF
导出
摘要 针对在观测噪声为非高斯强噪声的情况下,传统Kalman滤波将会失效,同时基于l1/l2联合范数的Huber法,其估计精度也会降低等问题,提出一种利用新息卡方检测法预判断的鲁棒滤波算法,该算法可以抑制观测连续非高斯强噪声的影响,提高滤波精度及稳定性,具有良好的鲁棒性。仿真实验对比了四种滤波方法在不同混合高斯噪声环境下的性能,结果表明:进行了卡方检验预判断的鲁棒滤波算法具有更高的状态估计精度和稳定性。 A modified robust filtering algorithm using of information detection method prejudges was proposed to establish a problem that Kalman filter and Huber-based robust filter of estimation accuracy reduced or failed for the non-Gaussian intensity observation noise. The modified algorithm could suppress non-Gaussian intensity observation noise and improve the accuracy and stability with excellent robustness. The performance of Kalman filter, detection filter, Huber-based filter and modified robust filter in environment with different Gaussian mixture were compared. The experimental results show that modified robust filtering algorithm has better state estimation of accuracy and stability.
机构地区 海军工程大学
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第8期1769-1774,共6页 Journal of System Simulation
基金 国家自然科学基金(61304241 61374206)
关键词 卡尔曼滤波 鲁棒性 M估计 Huber法 观测噪声 Kalman filter robustness M-estimator Huber observation noise
  • 相关文献

参考文献2

二级参考文献17

  • 1王志毅,陈光明,方建良,谷波,彭公琴.热泵空调换热器水侧污垢故障的诊断[J].制冷空调与电力机械,2005,26(1):5-7. 被引量:8
  • 2刘博强,袁修干,李敏.板翅式湿热交换器动态数学模型研究[J].航空学报,1995,16(1):12-17. 被引量:8
  • 3Candy J. Bayesian signal processing[M]. New Jersey: John Wiley & Sons, 2009.
  • 4Juliet S J, Uhlrnann J K. A new extension of the Kalman filter to nonlinear systems[C]//Proc SPIE- Int Soc Opt Eng. Orlando: SPIE, 1997:182-193.
  • 5Van der Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models [D]. Portland, USA: OGI School of Sci & Eng, Oregon Health & Sci Univ, 2004.
  • 6Lefebvre T, Bruyninckx H, de Schutter J. Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [J]. IEEE Transactions on Automatic Control, 2002, 47(8):1406-1409.
  • 7Box G E P. Non-normality and tests on variances [J]. Biometrika, 1953, 40 (3): 318-335.
  • 8Hampel F R, Roussseeuw P J, Ronchetti E W A. Robust statistics: The approach based on influence functions[M]. New York : Wiley, 1986.
  • 9Huber P J. Robust estimation of a location parameter[J]. Annals of Mathematical Statistics, 1964, 35 (2) : 73-101.
  • 10Karlgaard C D, Schaub H. Huber-based divided difference filtering [J]. Journal of Guidance, Control, and Dynamics,2007, 30(3): 885-891.

共引文献14

同被引文献37

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部